Skip to main content

Gene Therapy for Lung Cancer

An Introduction

  • Protocol
Lung Cancer

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 75))

  • 686 Accesses

Abstract

In spite of the significant advances made in the conventional treatment modalities currently available for the treatment of lung cancer, this malignancy remains the most frequent cause of cancer death in North America. In recent years, therefore, much attention has been given to identify noncross-resistant modalities of treatment that could potentially be used as an adjunct in the therapy of lung cancer. Recently there has been increasing optimism that gene therapy may be utilized as an approach to develop these novel anti-cancer treatment modalities. The field of gene therapy is still in its infancy with no major successes being reported yet in the treatment of cancer patients. However the limited positive results that have been reported have demonstrated the possibilities of this approach. With regard to the treatment of cancer patients, there are four main strategies that have been devised. These include the introduction of suicide genes, the replacement of defective tumor-suppressor genes, the inactivation of oncogenes, and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albelda, S. M., Wiewrodt, R., and Zuckerman, J. B. (2000) Gene therapy for lung disease: hype or hope? Ann. Intern. Med. 132, 649ā€“660.

    PubMedĀ  CASĀ  Google ScholarĀ 

  2. Blaese, R. M., Ishii-Morita, H., Mullen, C., Ramsey, J., Ram, Z., Oldfield, E., and Culver, K. (1994) In situ delivery of suicide genes for cancer treatment. Eur. J. Cancer 8, 1190ā€“1193.

    ArticleĀ  Google ScholarĀ 

  3. Mullen, C. A. (1994) Metabolic suicide genes in gene therapy. Pharmacol. Ther. 63, 199ā€“207.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Singhal, S. and Kaiser, L. R. (1998) Cancer chemotherapy using suicide genes. Surg. Oncol. Clin. North Am. 7, 505ā€“536.

    CASĀ  Google ScholarĀ 

  5. Reid, R., Mar, E. C., Huang, E. S., and Topal, M. D. (1988) Insertion and extension of acyclic, dideoxy, and ara nucleotides by herpesviridae, human alpha and human beta polymerases. A unique inhibition mechanism for 9-(1,3-dihydroxy-2-propoxymethyl)guanine triphosphate. J. Biol. Chem. 263, 3898ā€“3904.

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Gane, E., Saliba, F., Valdecasas, G. J., Oā€™Grady, J., Pescovitz, M. D., Lyman, S., and Robinson, C. A. (1997) Randomised trial of efficacy and safety of oral ganciclovir in the prevention of cytomegalovirus disease in liver-transplant recipients. The Oral Ganciclovir International Transplantation Study Group [corrected] [see comments] [published erratum appears in Lancet 1998 Feb 7;351(9100):454]. Lancet 350, 1729ā€“1733.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Freeman, S. M., Whartenby, K. A., Freeman, J. L., Abboud, C. N., and Marrogi, A. J. (1996) In situ use of suicide genes for cancer therapy. Semin. Oncol. 23, 31ā€“45.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. Pope, I. M., Poston, G. J., and Kinsella, A. R. (1997) The role of the bystander effect in suicide gene therapy. Eur. J. Cancer 33, 1005ā€“1016.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Rubsam, L. Z., Boucher, P. D., Murphy, P. J., KuKuruga, M., and Shewach, D. S. (1999) Cytotoxicity and accumulation of ganciclovir triphosphate in bystander cells cocultured with herpes simplex virus type 1 thymidine kinase-expressing human glioblastoma cells. Cancer Res. 59, 669ā€“675.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Sterman, D. H., Treat, J., Litzky, L. A., Amin, K. M., Coonrod, L., Molnar-Kimber, K., et al. (1998) Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Human Gene Ther. 9, 1083ā€“1092.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. (1999) Human gene marker/ therapy clinical protocols (complete updated listings). Human Gene Ther. 10, 2037ā€“2088.

    Google ScholarĀ 

  12. Nemunaitis, J. (1999) Oncolytic viruses. Invest. New Drugs 17, 375ā€“386.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. You, L., Yang, C. T., and Jablons, D. M. (2000) ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients. Cancer Res. 60, 1009ā€“1013.

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Nemunaitis, J., Ganly, I., Khuri, F., Arseneau, J., Kuhn, J., McCarty, T., et al. (2000) Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 60, 6359ā€“6366.

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Takahashi, T., Nau, M. M., Chiba, I., Birrer, M. J., Rosenberg, R. K., Vinocour, M., et al. (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246, 491ā€“494.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Levine, A. J. (1997) p53, the cellular gatekeeper for growth and division. Cell 88, 323ā€“331.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Roth, J. A., Nguyen, D., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., Ferson, D. Z., et al. (1996) Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer [see comments]. Nat. Med. 2, 985ā€“991.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Swisher, S. G., Roth, J. A., Nemunaitis, J., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., et al. (1999) Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J. Natl. Cancer Inst. 91, 763ā€“771.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Roth, J. A., Swisher, S. G., Merritt, J. A., Lawrence, D. D., Kemp, B. L., Carrasco, C. H., et al. (1998) Gene therapy for non-small cell lung cancer: a preliminary report of a phase I trial of adenoviral p53 gene replacement. Semin. Oncol. 25, 33ā€“37.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Inoue, A., Narumi, K., Matsubara, N., Sugawara, S., Saijo, Y., Satoh, K., and Nukiwa, T. (2000) Administration of wild-type p53 adenoviral vector synergistically enhances the cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of p53 gene. Cancer Lett. 157, 105ā€“112.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Nemunaitis, J., Swisher, S. G., Timmons, T., Connors, D., Mack, M., Doerksen, L., et al. (2000) Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J. Clin. Oncol. 18, 609ā€“622.

    PubMedĀ  CASĀ  Google ScholarĀ 

  22. Schuler, M., Rochlitz, C., Horowitz, J. A., Schlegel, J., Perruchoud, A. P., Kom-moss, F., et al. (1998) A phase I study of adenovirus-mediated wild-type p53 gene transfer in patients with advanced non-small cell lung cancer. Human Gene Ther. 9, 2075ā€“2082.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Kubba, S., Adak, S., Schiller, J., Slovis, B., Coffee, K., Worrel, J., et al. (2000) Phase I trial of adenovirus p53 in bronchioloalveolar cell lung carcinoma (BAC) administered by bronchoalveolar lavage. Proc. Am. Soc. Clin. Oncol. Abstract #1904.

    Google ScholarĀ 

  24. Xu, M., Kumar, D., Srinivas, S., Detolla, L. J., Yu, S. F., Stass, S. A., and Mixson, A. J. (1997) Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Human Gene Ther. 8, 177ā€“185.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Bouvet, M., Ellis, L. M., Nishizaki, M., Fujiwara, T., Liu, W., Bucana, C. D., et al. (1998) Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res. 58, 2288ā€“2292.

    PubMedĀ  CASĀ  Google ScholarĀ 

  26. Nishizaki, M., Fujiwara, T., Tanida, T., Hizuta, A., Nishimori, H., Tokino, T., et al. (1999) Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin. Cancer Res. 5, 1015ā€“1023.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Watanabe, T. and Sullenger, B. A. (2000) Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Proc. Natl. Acad. Sci. USA 97, 8490ā€“8494.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Parr, M. J., Manome, Y., Tanaka, T., Wen, P., Kufe, D. W., Kaelin, W. G., and Fine, H. A. (1997) Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Nat. Med. 3, 1145ā€“1149.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Strayer, M. S., Guttentag, S. H., and Ballard, P. L. (1998) Targeting type II and Clara cells for adenovirus-mediated gene transfer using the surfactant protein B promoter. Am. J. Respir. Cell Mol. Biol. 18, 1ā€“11.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Salgia, R. and Skarin, A. T. (1998) Molecular abnormalities in lung cancer. J. Clin. Oncol. 16, 1207ā€“1217.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Kawabe, S., Roth, J. A., Wilson, D. R., and Meyn, R. E. (2000) Adenovirus-mediated p16INK4a gene expression radiosensitizes non-small cell lung cancer cells in a p53-dependent manner. Oncogene 19, 5359ā€“5366.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Naruse, I., Hoshino, H., Dobashi, K., Minato, K., Saito, R., and Mori, M. (2000) Over-expression of p27kip1 induces growth arrest and apoptosis mediated by changes of pRb expression in lung cancer cell lines. Int. J. Cancer 88, 377ā€“383.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Ishizaki, J., Nevins, J. R., and Sullenger, B. A. (1996) Inhibition of cell proliferation by an RNA ligand that selectively blocks E2F function. Nat. Med. 2, 1386ā€“1389.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Haber, D. A. and Fearon, E. R. (1998) The promise of cancer genetics. Lancet 351(Suppl. 2), SII1ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  35. Stass, S. A. and Mixson, J. (1997) Oncogenes and tumor suppressor genes: therapeutic implications. Clin. Cancer Res. 3, 2687ā€“2695.

    PubMedĀ  CASĀ  Google ScholarĀ 

  36. Tanner, N. K. (1999) Ribozymes: the characteristics and properties of catalytic RNAs. FEMS Microbiol. Rev. 23, 257ā€“275.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Arndt, G. M. and Rank, G. H. (1997) Colocalization of antisense RNAs and ribozymes with their target mRNAs. Genome 40, 785ā€“797.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Cochet, O., Kenigsberg, M., Delumeau, I., Duchesne, M., Schweighoffer, F., Tocque, B., and Teillaud, J. L. (1998) Intracellular expression and functional properties of an anti-p21Ras scFv derived from a rat hybridoma containing specific lambda and irrelevant kappa light chains. Mol. Immunol. 35, 1097ā€“1110.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Cochet, O., Kenigsberg, M., Delumeau, I., Virone-Oddos, A., Multon, M. C., Fridman, W. H., et al. (1998) Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression. Cancer Res. 58, 1170ā€“1176.

    PubMedĀ  CASĀ  Google ScholarĀ 

  40. Jannot, C. B., Beerli, R. R., Mason, S., Gullick, W. J., and Hynes, N. E. (1996) Intracellular expression of a single-chain antibody directed to the EGFR leads to growth inhibition of tumor cells. Oncogene 13, 275ā€“282.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Roth, J. A. (1996) Modification of mutant K-ras gene expression in non-small cell lung cancer (NSCLC). Human Gene Ther. 7, 875ā€“889.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Zhang, Y., Nemunaitis, J., Scanlon, K. J., and Tong, A. W. (2000) Anti-tumorigenic effect of a K-ras ribozyme against human lung cancer cell line heterotransplants in nude mice. Gene Ther. 7, 2041ā€“2050.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Zhang, Y. A., Nemunaitis, J., and Tong, A. W. (2000) Generation of a ribozyme-adenoviral vector against K-ras mutant human lung cancer cells. Mol. Biotechnol. 15, 39ā€“49.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Nemunaitis, J., Holmlund, J. T., Kraynak, M., Richards, D., Bruce, J., Ognoskie, N., et al. (1999) Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J. Clin. Oncol. 17, 3586ā€“3595.

    PubMedĀ  CASĀ  Google ScholarĀ 

  45. Cunningham, C. C., Holmlund, J. T., Schiller, J. H., Geary, R. S., Kwoh, T. J., Dorr, A., and Nemunaitis, J. (2000) A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. 6, 1626ā€“1631.

    PubMedĀ  CASĀ  Google ScholarĀ 

  46. Fuchs, E. J., Bedi, A., Jones, R. J., and Hess, A. D. (1995) Cytotoxic T cells overcome BCR-ABL-mediated resistance to apoptosis. Cancer Res. 55, 463ā€“466.

    PubMedĀ  CASĀ  Google ScholarĀ 

  47. Shtil, A. A., Turner, J. G., Durfee, J., Dalton, W. S., and Yu, H. (1999) Cytokine-based tumor cell vaccine is equally effective against parental and isogenic multidrug-resistant myeloma cells: the role of cytotoxic T lymphocytes. Blood 93, 1831ā€“1837.

    PubMedĀ  CASĀ  Google ScholarĀ 

  48. Boon, T. and van der Bruggen, P. (1996) Human tumor antigens recognized by T lymphocytes. J. Exp. Med. 183, 725ā€“729.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Boon, T. and Old, L. J. (1997) Cancer tumor antigens. Curr. Opin. Immunol. 9, 681ā€“683.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., De Plaen, E., Van den Eynde, B., et al. (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643ā€“1647.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  51. Pieper, R., Christian, R. E., Gonzales, M. I., Nishimura, M. I., Gupta, G., Settlage, R. E., et al. (1999) Biochemical identification of a mutated human melanoma antigen recognized by CD4(+) T cells [see comments]. J. Exp. Med. 189, 757ā€“766.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Wang, R. F., Wang, X., Atwood, A. C., Topalian, S. L., and Rosenberg, S. A. (1999) Cloning genes encoding MHC class II-restricted antigens: mutated CDC27 as a tumor antigen. Science 284, 1351ā€“1354.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Pardoll, D. M., Golumbek, P., Levitsky, H., and Jaffee, L. (1992) Molecular engineering of the antitumor immune response. Bone Marrow Transplant. 9, 182ā€“186.

    PubMedĀ  Google ScholarĀ 

  54. Leach, D. R., Krummel, M. F., and Allison, J. P. (1996) Enhancement of antitumor immunity by CTLA-4 blockade [see comments]. Science 271, 1734ā€“1736.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Vincent, R. G., Chu, T. M., Lane, W. W., Gutierrez, A. C., Stegemann, P. J., and Madajewicz, S. (1978) Carcinoembryonic antigen as a monitor of successful surgical resection in 130 patients with carcinoma of the lung. J. Thorac. Cardiovasc. Surg. 75, 734ā€“739.

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. Kantor, J., Irvine, K., Abrams, S., Kaufman, H., DiPietro, J., and Schlom, J. (1992) Antitumor activity and immune responses induced by a recombinant carcinoembryonic antigen-vaccinia virus vaccine [see comments]. J. Natl. Cancer Inst. 84, 1084ā€“1091.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Kantor, J., Irvine, K., Abrams, S., Snoy, P., Olsen, R., Greiner, J., et al. (1992) Immunogenicity and safety of a recombinant vaccinia virus vaccine expressing the carcinoembryonic antigen gene in a nonhuman primate. Cancer Res. 52, 6917ā€“6925.

    PubMedĀ  CASĀ  Google ScholarĀ 

  58. Cole, D. J., Wilson, M. C., Baron, P. L., Oā€™Brien, P., Reed, C., Tsang, K. Y., and Schlom, J. (1996) Phase I study of recombinant CEA vaccinia virus vaccine with post vaccination CEA peptide challenge. Human Gene Ther. 7, 1381ā€“1394.

    ArticleĀ  CASĀ  Google ScholarĀ 

  59. Dickler, M. N., Ragupathi, G., Liu, N. X., Musselli, C., Martino, D. J., Miller, V. A., et al. (1999) Immunogenicity of a fucosyl-GM1-keyhole limpet hemocyanin conjugate vaccine in patients with small cell lung cancer. Clin. Cancer Res. 5, 2773ā€“2779.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Lee, L., Wang, R. F., Wang, X., Mixon, A., Johnson, B. E., Rosenberg, S. A., and Schrump, D. S. (1999) NY-ESO-1 may be a potential target for lung cancer immunotherapy. Cancer J. Sci. Am. 5, 20ā€“25.

    PubMedĀ  CASĀ  Google ScholarĀ 

  61. Rowse, G. J., Tempero, R. M., VanLith, M. L., Hollingsworth, M. A., and Gendler, S. J. (1998) Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model. Cancer Res. 58, 315ā€“321.

    PubMedĀ  CASĀ  Google ScholarĀ 

  62. Pardoll, D. M. (1993) Genetically engineered tumor vaccines. Ann. NY Acad. Sci. 690, 301ā€“310.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539ā€“3543.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Huang, A. Y., Golumbek, P., Ahmadzadeh, M., Jaffee, E., Pardoll, D., and Levitsky, H. (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264, 961ā€“965.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Simons, J. W., Jaffee, E. M., Weber, C. E., Levitsky, H. I., Nelson, W. G., Carducci, M. A., et al. (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res. 57, 1537ā€“1546.

    PubMedĀ  CASĀ  Google ScholarĀ 

  66. Sanda, M. G., Ayyagari, S. R., Jaffee, E. M., Epstein, J. I., Clift, S. L., Cohen, L. K., et al. (1994) Demonstration of a rational strategy for human prostate cancer gene therapy. J. Urol. 151, 622ā€“628.

    PubMedĀ  CASĀ  Google ScholarĀ 

  67. Simons, J. W., Mikhak, B., Chang, J. F., DeMarzo, A. M., Carducci, M. A., Lim, M., et al. (1999) Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 59, 5160ā€“5168.

    PubMedĀ  CASĀ  Google ScholarĀ 

  68. Jaffee, E. M., et el. (2001) Novel Allogeneic Granulocyte-Macrophase Colony-stimulating factor-secreting tumor vaccine for Pancreatic Cancer: A Phase I trial of safety and immune activation. J. Clin. Oncol. 19(1), 145ā€“156.

    PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Haura, E.B., Sotomayor, E., Antonia, S.J. (2003). Gene Therapy for Lung Cancer. In: Driscoll, B. (eds) Lung Cancer. Methods in Molecular Medicineā„¢, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-324-0:529

Download citation

  • DOI: https://doi.org/10.1385/1-59259-324-0:529

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-920-9

  • Online ISBN: 978-1-59259-324-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics