Lung Cancer pp 671-684 | Cite as

Induction of Programmed Cell Death with an Antisense Bcl-2 Oligonucleotide

  • Patrick P. Koty
  • Wendong Lei
  • Mark L. Levitt
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 75)


Limited advances have occurred in lung cancer prevention and treatment (1), which has necessitated the investigation of other means of intervention.As cancer is a disease of altered cellular homeostasis and genetic damage, programmed cell death (PCD) has gained increasing importance as a physiologic mechanism that has relevance to cancer-treatment strategies (2). Dysregulation of PCD in lung cancer renders these cells resistant to chemotherapeutic agents that induce this process (3,4). Therefore, genetic manipulation of PCD regulatory genes may restore the altered homeostasis in these cells and permit these genetically damaged cells to enter PCD.A known regulator of the PCD pathway is Bcl-2, a protein capable of suppressing cell death, which is upregulated in human premalignant and malignant lung lesions (5,6). Bcl-2 has been localized to the nuclear membrane, the endoplasmic reticulum, the cytosol, and the outer mitochondrial membrane (7, 8, 9, 10, 11). The exact molecular mechanisms by which Bcl-2 inhibits PCD have not been unequivocally established.Initial results indicate Bcl-2 inactivates inducers of PCD, such as Bax, through heterodimerization and that it is the ratio of Bcl-2, or other functionally similar genes, to the expression of PCD inducers that determines whether a cell will undergo PCD (12,13).When Bcl-2 heterodimerizes with Bax within the outer mitochondria membrane it forms an ion channel, which is functionally different from the ion channel formed by Bax homodimerization (14,15).


Reverse Transcription Polymerase Chain Reaction Programme Cell Death Regulatory Gene Cell Death Detection ELISAPLUS Outer Mitochondrion Membrane Malignant Lung Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Greenlee, R. T., Murray, T., Bolden S., and Wingo P. A. (2001) Cancer statistics, 2000. CA Cancer J. Clin. 50, 7–33.CrossRefGoogle Scholar
  2. 2.
    Thompson, H. J., Strange, R., and Schedin, P. J. (1992) Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol. Biomarkers Prev. 1, 597–602.PubMedGoogle Scholar
  3. 3.
    Shepherd, F. A. (1994) Treatment of advanced non-small cell lung cancer. Semin. Oncol. 21, 7–18.PubMedGoogle Scholar
  4. 4.
    Reeve, J. G., Xiong, J., Morgan, J., and Bleehen, N. M. (1996) Expression of apoptosis-regulatory genes in lung tumor cell lines: relationship to p53 expression and relevance to acquired drug resistance. Br. J. Cancer 73, 1193–1200.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang, H., Yousem, S. A., Franklin, W. A., Elder, E., Landreneau, R., Ferson, P., et al. (1998) Differentiation and programmed cell death-related intermediate biomarkers for the development of non-small cell lung cancer: a pilot study. Hum. Pathol. 29, 965–971.PubMedCrossRefGoogle Scholar
  6. 6.
    Törmänen, U., Nuorva, K., Soini, Y., and Pääkkö, P. (1999) Apoptotic activity is increased in parallel with the metaplasia-dysplasia-carcinoma sequence of the bronchial epithelium. Br. J. Cancer 79, 996–1002.PubMedCrossRefGoogle Scholar
  7. 7.
    Jacobson, M. D., Burne, J. F., King, M. P., Miyashita, T., Reed, J. C., and Raff, M. C. (1993) Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 361, 365–369.PubMedCrossRefGoogle Scholar
  8. 8.
    Liu, Y. J., Mason, D. Y, Johnson, G. D., Abbot, S., Gregory, C. D., Hardie, C. D., et al. (1991) Germinal center cells express bcl-2 protein after activation by signals which prevent their entry to apoptosis. Eur. J. Immunol. 21, 1905–1910.PubMedCrossRefGoogle Scholar
  9. 9.
    Tsujimoto, Y and Croce, C. M. (1986) Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc. Natl. Acad. Sci. USA 83, 5214–5218.PubMedCrossRefGoogle Scholar
  10. 10.
    Bruel, A., Karsenty, E., Schmid, M., McDonnel, T. J., and Lanotte, M. (1997) Altered sensitivity to retinoid-induced apoptosis associated with changes in the subcellular distribution of Bcl-2. Exp. Cell Res. 233, 281–287.PubMedCrossRefGoogle Scholar
  11. 11.
    Hsu, Y T., Wolter, K. G., and Youle, R. J. (1997) Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis. Proc. Natl. Acad. Sci. USA 94, 3668–3672.PubMedCrossRefGoogle Scholar
  12. 12.
    Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619.PubMedCrossRefGoogle Scholar
  13. 13.
    Salomons, G. S., Brady, H. J. M., Verwijs-Janssen, M., Van Den Berg, J. D., Hart, A. A. M., Van Den Berg, H., et al. (1997) The Bax(α): Bcl-2 ratio modulates the response to dexamethasone in leukaemic cells and is highly variable in childhood acute leukaemia. Int. J. Cancer 71, 959–965.PubMedCrossRefGoogle Scholar
  14. 14.
    Schendel, S. L., Xie, Z., Montal, M. O., Matsuyama, S., Montal, M., and Reed, J. C. (1997) Channel formation by antiapoptotic protein Bcl-2. Proc. Natl. Acad. Sci. USA 94, 5113–5118.PubMedCrossRefGoogle Scholar
  15. 15.
    Antonsson, B., Conti, F., Ciavatta, A. M., Montessuit, S., Lewis, S., Martinou, I., et al. (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277, 370–372.PubMedCrossRefGoogle Scholar
  16. 16.
    Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., et al. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132.PubMedCrossRefGoogle Scholar
  17. 17.
    Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136.PubMedCrossRefGoogle Scholar
  18. 18.
    Uhlmann, E. and Peyman, A. (1990) Antisense oligonucleotides: a new principle. Chem. Rev. 90, 543–584.CrossRefGoogle Scholar
  19. 19.
    Crooke, S. T. (1995) Molecular mechanism of action of oligonucleotides designed to interact with nucleic acids, in Therapeutic Applications of Oligonucleotides (Crooke, S. T., ed.), R. G. Landes, Austin, pp. 11–38.Google Scholar
  20. 20.
    Smith, L., Andersen, K. B., Hovgaard, L., and Jaroszewski, J. W. (2000) Rational selection of antisense oligonucleotide sequences. Eur. J. Pharm. Sci. 11, 191–198.PubMedCrossRefGoogle Scholar
  21. 21.
    Sohail, M. and Southern, E. M. (2000) Selecting optimal antisense reagents. Adv. Drug Deliv. Rev. 44, 23–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Agrawal, S. (1999) Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim. Biophys. Acta 1489, 53–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia-Chaumont, C., Seksek, O., Grzybowska, J., Borowski, E., and Bolard, J. (2000) Delivery systems for antisense oligonucleotides. Pharmacol. Ther. 87, 255–277.PubMedCrossRefGoogle Scholar
  24. 24.
    Akhtar, S., Hughes, M. D., Khan, A., Bibby, M. Hussain, M., Nawaz, Q., et al. (2000) The delivery of antisense therapeutics. Adv. Drug Deliv. Rev. 44, 3–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Ziegler, A., Luedke, G. H., Fabbro, D., Altmann, K. H., Stahel, R. A., and Zangmeister-Wittke, U. (1997) Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence. J. Natl. Cancer Inst. 89, 1027–1036.PubMedCrossRefGoogle Scholar
  26. 26.
    Koty, P. P., Zhang, H., and Levitt, M. L. (1999) Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines. Lung Cancer 23, 115–127.PubMedCrossRefGoogle Scholar
  27. 27.
    Waters, J. S., Webb, A., Cunningham, D., Clarke, P. A., Raynaud, F., di Stefano, F., and Cotter, F. E. (2000) Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J. Clin. Oncol. 18, 1812–1823.PubMedGoogle Scholar
  28. 28.
    Jansen, B., Wacheck, V., Heere-Ress, E., Schlagbauer-Wadl, H., Hoeller, C., Lucas, T., et al. (2000) Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356, 1728–1733.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Patrick P. Koty
    • 1
  • Wendong Lei
    • 2
  • Mark L. Levitt
    • 1
  1. 1.Department of Environmental and Occupational Health, Graduate School of Public HealthUniversity of PittsburghPittsburgh
  2. 2.Cancer Institute and HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations