Skip to main content

Tumor-Specific Metastasis to Lung Using Reporter Gene-Tagged Tumor Cells

  • Protocol
Lung Cancer

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 74))

  • 800 Accesses

Abstract

The lung offers circulating tumor cells—after their initial development as primary tumors and their selection for metastasis to other organs of patients—several optimal conditions for survival and progression that may be unique to this organ. First, the lung is highly oxygenated and provides maximal oxygen tension required for the aggressive metabolism that occurs in most tumor cell populations. Second, the lung offers a vast array of small blood vessels that are required for oxygen: CO2 exchange and for nutrient:catabolite exchange; this microvasculature serves the very active metabolic requirements of tumor cells very effectively. Third, the lung is the first or second organ encountered by tumor cells when they are “liberated” from primary tumors. Fourth, the endothelial/intimal linings of the small blood vessels of the lung may offer adhesion and/or migration sites for tumor cells that are more facile than blood vessels in many other organs. In these regards, a contrast is provided by micrometastases that develop in the lung vs those in bone where oxygen/nutrient/blood vessel availabilities are much more limited. For these and many other reasons, metastasis to the lung may be a more efficient process than metastasis to other organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fidler, I. J., Gersten, D. M., and Hart, I. R. (1978) The biology of cancer invasion and metastasis. Adv. Cancer Res. 28, 149–250.

    Article  PubMed  CAS  Google Scholar 

  2. Singh, R. K., Tsan, R., and Radinsky, R. (1997) Influence of the host microenvironment on the clonal selection of human colon carcinoma cells during primary tumor growth and metastasis. Clin. Exp. Metast. 15, 140–150.

    Article  CAS  Google Scholar 

  3. Nicolson, G. L. (1993) Cancer progression and growth: relationship of paracrine and autocrine growth mechanisms to organ preference of metastasis. Exp. Cell Res. 204, 171–180.

    Article  PubMed  CAS  Google Scholar 

  4. Fidler, I. J. and Hart, I. R. (1982) Biological diversity in metastatic neoplasms: origins and implications. Science 217, 998–1003.

    Article  PubMed  CAS  Google Scholar 

  5. Fisher, B. and Fisher, E. R. (1967) The organ distribution of disseminated 51Cr-labeled tumor cells. Cancer Res. 27, 412–420.

    PubMed  CAS  Google Scholar 

  6. Li, H., Hamou, M.-F., de Tribolet, N., Jaufeerally, R., Hofmann, M., Diserens, A.-C., and van Meir, E. G. (1993) Variant CD44 adhesion molecules are expressed in human brain metastases but not in glioblastomas. Cancer Res. 53, 5345–5349.

    PubMed  CAS  Google Scholar 

  7. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56.

    Article  PubMed  CAS  Google Scholar 

  8. Tarin, D. and Price, J. E. (1981) Influence of microenvironment and vascular anatomy on ”metastatic“ colonization potential of mammary tumors. Cancer Res. 41, 3604–3609.

    PubMed  CAS  Google Scholar 

  9. Sperandio, S., de Belle, I., and Bredesen, D. E. (2000) An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA 97, 14376–14381.

    Article  PubMed  CAS  Google Scholar 

  10. Fidler, I. J. and Ellis, L. M. (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79, 185–188.

    Article  PubMed  CAS  Google Scholar 

  11. Blood, C. H. and Zetter, B. (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim. Biophs. Acta 1032, 89–118.

    CAS  Google Scholar 

  12. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31.

    Article  PubMed  CAS  Google Scholar 

  13. Radinsky, R., Kraemer, P. M., Raines, M. A., Kung, H.-J., and Culp, L. A. (1987) Amplification and rearrangement of the Kirsten ras oncogene in virus-transformed Balb/c 3T3 cells during malignant tumor progression. Proc. Natl. Acad. Sci. USA 84, 5143–5147.

    Article  PubMed  CAS  Google Scholar 

  14. Lin, W.-C., Pretlow, T. P., Pretlow, T. G., and Culp, L. A. (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res. 50, 2808–2817.

    PubMed  CAS  Google Scholar 

  15. Lin, W.-C., Pretlow, T. P., Pretlow, T. G., and Culp, L. A. (1990) Development of micrometastases: earliest events detected with bacterial lacZ gene-tagged tumor cells. J. Natl. Cancer Inst. 82, 1497–1503.

    Article  PubMed  CAS  Google Scholar 

  16. Lin, W.-C. and Culp, L. A. (1992) Altered establishment/clearance mechanisms during experimental micrometastasis with live and/or disabled bacterial lacZ-tagged tumor cells. Invasion Metast. 12, 197–209.

    CAS  Google Scholar 

  17. Lin, W.-C., Pretlow, T. P., Pretlow, T. G., and Culp, L. A. (1992) High resolution analyses of two different classes of tumor cells in situ tagged with alternative histochemical marker genes. Am. J. Pathol. 141, 1331–1342.

    PubMed  CAS  Google Scholar 

  18. Lin, W.-C., O'Connor, K. L., and Culp, L. A. (1993) Complementation of two related tumour cell classes during experimental metastasis tagged with different histochemical marker genes. Br. J. Cancer 67, 910–921.

    Article  PubMed  CAS  Google Scholar 

  19. Kleinman, N. R., Lewandowska, K., and Culp, L. A. (1994) Tumour progression of human neuroblastoma cells tagged with a lacZ marker gene: earliest events at ectopic injection sites. Br. J. Cancer 69, 670–679.

    Article  PubMed  CAS  Google Scholar 

  20. Pretlow, T. G., Pelley, R. J., and Pretlow, T. P. (1994) Biochemistry of prostatic carcinoma, in Biochemical and Molecular Aspects of Selected Cancers, vol. 2 (Pretlow, T. G. II and Pretlow, T. P., eds.), Academic Press, Inc., San Diego, CA, pp. 169–237.

    Google Scholar 

  21. Lalani, E.-N., Lanaido, M. E., and Abel, P. D. (1997) Molecular and cellular biology of prostate cancer. Cancer Met. Rev. 16, 29–66.

    Article  Google Scholar 

  22. Lange, P. H. and Vessella, R. L. (1999) Mechanisms, hypotheses and questions regarding prostate cancer micrometastases to bone. Cancer Met. Rev. 17, 331–336.

    CAS  Google Scholar 

  23. Nagabhushan, M., Miller, C. M., Pretlow, T. P., Giaconia, J. M., Edgehouse, N. L., Schwartz, S., et al. (1996) CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res. 56, 3042–3046.

    PubMed  CAS  Google Scholar 

  24. Sramkoski, R. M., Pretlow, T. G., Giaconia, J. M., Pretlow, T. P., Schwartz, S., Sy, M.-S., et al. (1999) A new human prostate carcinoma cell line, 22Rv1. In Vitro 35, 403–409.

    Article  CAS  Google Scholar 

  25. Holleran, J. L., Miller, C. J., and Culp, L. A. (2000) Tracking micrometastasis to multiple organs with lacZ-tagged CWR22R prostate carcinoma cells. J. Histochem. Cytochem. 48, 643–651.

    Article  PubMed  CAS  Google Scholar 

  26. Culp, L. A., Lin, W.-C., Kleinman, N. R., Campero, N. M., Miller, C. J., and Holleran, J. L. (1998) Tumor progression, micrometastasis, and genetic instabil-524 Culp et al. ity tracked with histochemical marker genes. Prog. Histochem. Cytochem. 33, 329–350.

    Article  CAS  Google Scholar 

  27. Culp, L. A., Lin, W.-C., and Kleinman, N. R. (1999) Tagged tumor cells reveal regulatory steps during earliest stages of tumor progression and micrometastasis. Histol. Histopathol. 14, 879–886.

    PubMed  CAS  Google Scholar 

  28. Holleran, J. L., Miller, C. J., Edgehouse, N. L., Pretlow, T. P., and Culp, L. A. (2002) Differential experimental micrometastasis to lung, liver, and bone with lacZ-tagged CWR22R prostate carcinoma cells. Clin. Exp. Metast. 19, 17–24.

    Article  Google Scholar 

  29. O'Connor, K. L. and Culp, L. A. (1994) Quantitation of two histochemical markers in the same extract using chemiluminescent substrates. BioTechniques 17, 502–509.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Culp, L.A., Lin, WC., Kleinman, N., Holleran, J.L., Miller, C.J. (2003). Tumor-Specific Metastasis to Lung Using Reporter Gene-Tagged Tumor Cells. In: Driscoll, B. (eds) Lung Cancer. Methods in Molecular Medicine™, vol 74. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-323-2:507

Download citation

  • DOI: https://doi.org/10.1385/1-59259-323-2:507

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-985-8

  • Online ISBN: 978-1-59259-323-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics