Skip to main content

Matrix Metalloproteinase Expression in Lung Cancer

  • Protocol
Lung Cancer

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 74))

Abstract

The importance of matrix metalloproteinases (MMPs) in the growth and spread of solid tumors has been known for over a decade (1,2). However, the molecular mechanisms that regulate their expression and the elucidation of their role in angiogenesis are subjects of extensive, ongoing investigation. The MMPs are a family of extracellular, zinc-dependent proteinases that control tumor growth via tumor promotion (3) and angiogenesis (2,4). They are secreted as latent proenzymes and become activated after cleavage of their propeptide domain. MMPs are regulated on several levels including transcription, protein activation, and the interaction with endogenous inhibitors such as the tissue inhibitors of metalloproteinases (TIMPs) (5). Over 20 MMPs have been described to date (6; see Table 1). Although traditionally subclassified according to substrate specifi city (e.g., collagenases, gelatinases, stromelysins), collectively they are capable of breaking down all of the components of the extracellular matrix (ECM), including components of basement membranes (BMs) and submucosa (1,5,6). MMP-2 and MMP-9, gelatinase A and B, respectively, are of particular interest because they degrade type IV collagen, the major component of basement membranes. Recently, Fang et al. (7) demonstrated in an animal model of chondrosarcoma that MMP-2 shifts the “proteolytic balance” towards an angiogenic phenotype, and is required for new blood vessel formation.

Table 1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mignatti, P. and Rifkin, D. B. (1993) Biology and biochemistry of proteinases in tumor invasion. Physiolog. Rev. 73, 161–195.

    CAS  Google Scholar 

  2. Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336.

    Article  PubMed  CAS  Google Scholar 

  3. Matrisian, L. (1999) Cancer biology: extracellular proteinases in malignancy. Curr. Biol. 9, R776–R778.

    Article  PubMed  CAS  Google Scholar 

  4. Bergers, G., Javaherian, K., Lo, K-M., Folkman, J., and Hanahan, D. (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–812.

    Article  PubMed  CAS  Google Scholar 

  5. Kleiner, D. E. and Stetler-Stevenson, W. G. (1999) Matrix metalloproteinases and metastasis. Cancer Chemother. Pharmacol. 43(p), S42–S51.

    Article  PubMed  CAS  Google Scholar 

  6. Nelson, A. R., Fingleton, B., Rothenberg, M. L., and Matrisian, L. M. (2000) Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 18 1145–1149.

    Google Scholar 

  7. Fang, J., Shing, Y., Wiederschain, D., Yan, L., Butterfield, C., Jackson, G., et al. (2000) Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc. Natl. Acad. Sci. USA 97 3884–3889.

    Article  PubMed  CAS  Google Scholar 

  8. Muller, D., Breathnach, R., Engelmann, A., Millon, R., Bronner, G., Flesch, H., et al. (1991) Expression of collagenase-related metalloproteinase genes in human lung or head and neck tumours. Int. J. Cancer 48, 550–556.

    Article  PubMed  CAS  Google Scholar 

  9. Nakagawa, H. and Yagihashi, S. (1994) Expression of type IV collagen and its degrading enzymes in squamous carcinoma of the lung. Japn. J. Cancer Res. 85, 934–938.

    Article  CAS  Google Scholar 

  10. Garbisa, S., Scagliotti, G., Masiero, L., DiFrancesco, C., Caenazzo, C., Onisto, M., et al. (1992) Correlation of serum metalloproteinase levels with lung cancer metastasis and response to therapy. Cancer Res. 52, 4548–4549.

    PubMed  CAS  Google Scholar 

  11. Delebecq, T. J., Porte, H., Zerimach, F., Copin, M. C., Gouyer, V., Dacquembronne, E., et al. (2000) Overexpression level of stromelysin 3 is related to lymph node involvement in non-small cell lung cancer. Clin. Cancer Res. 6, 1086–1092.

    PubMed  CAS  Google Scholar 

  12. Nawrocki, B., Polette, M., Marchand, V., Monteau, M., Gillery, P., Tournier, J.-M., and Birembaut, P. (1997) Expression of matrix metalloproteinases and their inhibitors in human bronchopulmonary carcinomas: quantificative and morphological analyses. Int. J. Cancer 72, 556–564.

    Article  PubMed  CAS  Google Scholar 

  13. Trump, B. F., Dowell, E. M., Glaxin, F., Barret, L. A., Becci, P. J., Schurch, W., et al. (1978) The respiratory epithelium. III. Histogenesis of epidermoid metaplasia and carcinoma in situ in the human. J. Natl. Cancer Inst. 61, 563–575.

    PubMed  CAS  Google Scholar 

  14. Bolon, I., Brambilla, E., Vandenbunder, B., Robert, C., Lantuejoul, S., and Brambilla, C. (1996) Changes in the expression of matrix proteases and of transcription factor c-ets-1 during progression of precancerous bronchial lesions. Lab. Investig. 75.

    Google Scholar 

  15. llis, S. M., Nabeshima, K., and Biswas, C. (1989) Monoclonal antibody preparation and purification of a tumor cell collagenase-stimulatory factor. Cancer Res. 49, 3385–3391.

    Google Scholar 

  16. Prescott, J., Troccoli, N., and Biswas, C. (1989). Coordinate increase in collagenase mRNA and enzyme levels in human fibroblasts treated with tumor cell factor, TCSF. Biochem. Intl. 19, 257–266.

    CAS  Google Scholar 

  17. Kataoka, H., DeCastro, R., Zucker, S., and Biswas, C. (1993) Tumor cell-derived collagenase stimulating factor increases expression of interstitial collagenase, stromelysin, and 72-kDa gelatinase. Cancer Res. 53, 3154–3158.

    PubMed  CAS  Google Scholar 

  18. Lim, M., Martinez, T., Jablons, D., Cameron, R., Guo, H., Toole, B., et al. (1998) Tumor-derived EMMPRIN (extracellular matrix metalloproteinase inducer) stimulates collagenase transcription through MAPK p38. FEBS Lett. 441, 88–92.

    Article  PubMed  CAS  Google Scholar 

  19. Bolon, I., Devouassoux, M., Robert, C., Moro, D., Brambilla, C., and Brambilla, E. (1997) Expression of urokinase-type plasminogen activator, stromelysin 1, stromelysin 3, and matrilysin genes in lung carcinomas. Am. J. Pathol. 150, 1619–1629.

    PubMed  CAS  Google Scholar 

  20. nderson, I. C., Shipp, M. A., Docherty, A. J. P., and Teicher, B. A. (1996) Combination therapy including a gelatinase inhibitor and cytotoxic agent reduces local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res. 56, 715–718.

    Google Scholar 

  21. Prontera, C., Mariani, B., Rossi, C., Poggi, A., and Rotilio, D. (1999) Inhibition of gelatinase A (MMP-2) by batimastat and captopril reduces tumor growth and lung metastasis in mice bearing Lewis lung carcinoma. Int. J. Cancer 81, 761–766.

    Article  PubMed  CAS  Google Scholar 

  22. Itoh, T., Tanioka, T., Matsuda, H., Nishimoto, H., Yoshioka, T., Suzuki, R., and Uehira, M. (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin. Exp. Mets. 17, 177–181.

    Article  CAS  Google Scholar 

  23. Brown, P. D. and Giavazzi, R. (1995) Matrix metalloproteinase inhibition: a review of antitumor activity. Ann. Oncol. 6, 967–974.

    PubMed  CAS  Google Scholar 

  24. Yip, D., Ahmad, A., Karapetis, C. S., Hawkins, C. A., and Harper, P. G. (1999) Matrix metalloproteinase inhibitors: applications in oncology. Invest. New Drugs 17, 387–399.

    Article  PubMed  CAS  Google Scholar 

  25. Parsons, S. L., Watson, S. A., and Steele, R. J. (1997) Phase I/II trial of batimastat, a matrix metalloproteinase inhibitor, in patients with malignant ascites. Eur. J.Surg. Oncol. 23, 526–531.

    Article  PubMed  CAS  Google Scholar 

  26. Macaulay, V. M., O'Byrne, K. J., Saunders, M. P., Braybrooke, J. P., Long, L., Gleeson, F., et al. (1999) Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin. Cancer Res. 5 513–520.

    PubMed  CAS  Google Scholar 

  27. Steward, W. P. (1999) Marimastat (BB2516): current status and development. Cancer Chemother. Pharmacol. 43(p), S56–S60.

    Article  PubMed  CAS  Google Scholar 

  28. Wojtowicz-Praga, S., Torri, J., Johnson, M., Steen, V., Marshall, J., Ness, E., et al. (1998) Phase I trial of marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J. Clin. Oncol. 16, 2150–2156.

    PubMed  CAS  Google Scholar 

  29. British Biotech PLC. (1999) Results of marimastat trial 128-pancreatic cancer monotherapy trial. Press release, February.

    Google Scholar 

  30. British Biotech PLC. (2000) Results of marimastat study 193 in advanced pancreatic cancer. Press release, January.

    Google Scholar 

  31. British Biotech PLC. (1999) Results of marimastat study 145 in gastric cancer. Press release, August.

    Google Scholar 

  32. Shalinsky, D. R., Shetty, B., Pithavala, Y., Bender, S., Neri, A., Webber, S., et al. (2000) Prinomastat: a selective matrix metalloprotease inhibitor-preclinical and clinical development for oncology, in Cancer Drug Discovery and Development: Matrix Metalloproteinase Inhibitors in Cancer Therapy (Clendennin, N. J. and Appelt, K., eds.), Humana Press, Inc., Totowa, NJ, pp. 143–173.

    Chapter  Google Scholar 

  33. Shalinsky, D. R., Brekken, J., Zou, H., McDermott, C.D., Forsyth, P., Edwards, D., et al. (1999) Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann. NYAcad. Sci. 878, 236–270.

    Article  CAS  Google Scholar 

  34. Shalinsky, D. R., Brekken, J., Zou, H., Bloom, L. A., McDermott, C. D., Zook, S., et al. (1999) Marked antiangiogenic and antitumor efficacy of AG3340 in chemoresistant non-small cell lung cancer tumors: single agent and combination chemotherapy studies. Clin. Cancer Res. 5, 1905–1917.

    PubMed  CAS  Google Scholar 

  35. Agouron Pharmaceuticals, Inc. (2000) Pfizer discontinues phase III trials of prinomastat in advanced cancers but continues multiple phase II trials. Press release, August 4. New York and La Jolla, CA www.agouron.com/pages/press_releases/ pr080400.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lim, M., Jablons, D.M. (2003). Matrix Metalloproteinase Expression in Lung Cancer. In: Driscoll, B. (eds) Lung Cancer. Methods in Molecular Medicine™, vol 74. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-323-2:349

Download citation

  • DOI: https://doi.org/10.1385/1-59259-323-2:349

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-985-8

  • Online ISBN: 978-1-59259-323-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics