Lung Cancer pp 527-544 | Cite as

Cultures of Surgical Material from Lung Cancers

A Kinetic Approach
  • Bruce C. Baguley
  • Elaine S. Marshall
  • Timothy I. Christmas
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 74)


Despite great advances in our understanding of the molecular basis of lung cancer, the efficacy of chemotherapy of lung cancer remains disappointingly low (1). Most of the drugs with established activity against lung cancer were developed using mice with transplantable solid tumors of either murine or human origin. In the 1980s, methods were developed for semi-automated testing of drugs against multiple cell lines (2,3). This allowed the feasibility of an alternative, in vitro approach to the discovery of new anticancer drugs to be explored. Thirty cell lines representing eight lung cancer pathologies, together with 76 other cell lines representing other carcinomas, gliomas, leukemias, melanomas, and sarcomas, were collected in a major initiative by the U.S. National Cancer Institute (NCI) (4). Tens of thousands of new drugs have been screened against this panel and multiple relationships linking growth inhibition, resistance mechanisms, and other genetic characteristics have been elucidated (5,6). However, recent studies have also highlighted the differences between cell lines and tumors growing in vivo. In particular, the patterns of gene expression of cell lines in the NCI cell line panel, when measured by microarray analysis, are more like each other than like those of tumors growing in vivo (7).


Pleural Fluid Sodium Selenite Mitotic Inhibitor Stainless Steel Screen Block Cell Division 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hoffman, P. C., Mauer, A. M., and Vokes, E. E. (2000) Lung. cancer. Lancet 355, 479–485.PubMedGoogle Scholar
  2. 2.
    Finlay, G. J., Baguley, B. C., and Wilson, W. R. (1984) A semiautomated microculture method for investigating growth inhibitory effects of cytotoxic compounds on exponentially growing carcinoma cells. Anal. Biochem. 139, 272–277.PubMedCrossRefGoogle Scholar
  3. 3.
    Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., et al. (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827–4833.PubMedGoogle Scholar
  4. 4.
    Alley, M. C., Scudiero, D. A., Monks, A., Hursey, M. L., Czerwinski, M. J., Fine, D. L., et al. (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589–601.PubMedGoogle Scholar
  5. 5.
    Weinstein, J. N., Kohn, K. W., Grever, M. R., Viswanadhan, V. N., Rubinstein, L. V., et al. (1992) Neural computing in cancer drug development-predicting mechanism of action. Science 258, 447–451.PubMedCrossRefGoogle Scholar
  6. 6.
    Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., et al. (2000) A gene expression database for the molecular pharmacology of cancer. Nature Genet. 24, 236–244.PubMedCrossRefGoogle Scholar
  7. 7.
    Ross, D. T., Scherf, U., Eisen, M. B., Perou, C. M., Rees, C., Spellman, P., et al. (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet. 24, 227–235.PubMedCrossRefGoogle Scholar
  8. 8.
    O'Connor, P. M., Jackman, J., Bae, I., Myers, T. G., Fan, S. J., Mutoh, M., et al. (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57, 4285–4300.PubMedGoogle Scholar
  9. 9.
    Wilson, G. D. and McNally, N. J. (1991) Measurement of cell proliferation using bromodeoxyuridine, in Cell Proliferation in Clinical Diagnosis (Hall, P. A., Levison, D. A., and Wright, N. A., eds.), Springer-Verlag, London, pp. 113–139.Google Scholar
  10. 10.
    Steel, G. G. (1977) Basic theory of growing cell populations, in Growth Kinetics of Tumours, 1st ed. (Steel, G. G., ed.), Clarendon, Oxford pp. 56–85.Google Scholar
  11. 11.
    Komaki, R., Milas, L., Ro, J. Y., Fujii, T., Perkins, P., Allen, P., et al. (1998) Prognostic biomarker study in pathologically staged N1 non-small cell lung cancer. Int. J. Rad. Oncol. Biol. Phys. 40, 787–796.CrossRefGoogle Scholar
  12. 12.
    Sirzen, F., Zhivotovsky, B., Nilsson, A., Bergh, J., and Lewensohn, R. (1998) Higher spontaneous apoptotic index in small cell compared with non-small cell lung carcinoma cell lines; lack of correlation with Bcl-2/Bax. Lung Cancer 22, 1–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Baguley, B. C., Marshall, E. S., Whittaker, J. R., Dotchin, M. C., Nixon, J., McCrystal, M. R., et al. (1995) Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer. Eur. J. Cancer 31A, 230–237.PubMedCrossRefGoogle Scholar
  14. 14.
    Baguley, B. C., Marshall, E. S., Holdaway, K. M., Rewcastle, G. W., and Denny, W. A. (1998) Inhibition of growth of primary human tumour cell cultures by a 4-anilinoquinazoline inhibitor of the epidermal growth factor receptor family of tyrosine kinases. Eur. J. Cancer 34, 1086–1090.PubMedCrossRefGoogle Scholar
  15. 15.
    Baguley, B. C., Marshall, E. S., and Finlay, G. J. (1999) Short-term cultures of clinical tumor material: potential contributions to oncology research. Oncol. Res. 11, 115–124.PubMedGoogle Scholar
  16. 16.
    Smith, J. A. and Martin, L. (1973) Do cells cycle? Proc. Natl. Acad. Sci. USA 70, 1263–1267.CrossRefGoogle Scholar
  17. 17.
    Cross, F., Roberts, J., and Weintraub, H. (1989) Simple and complex cell cycles. Annu. Rev. Cell Biol. 5, 341–395.PubMedCrossRefGoogle Scholar
  18. 18.
    Eastman, A. (1990) Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells 2, 275–280.PubMedGoogle Scholar
  19. 19.
    Marshall, E. S., Finlay, G. J., Matthews, J. H. L., Shaw, J. H. F., Nixon, J., and Baguley, B. C. (1992) Microculture-based chemosensitivity testing: a feasibility study comparing freshly explanted human melanoma cells with human melanoma cell lines. J. Natl. Cancer. Inst. 84, 340–345.PubMedCrossRefGoogle Scholar
  20. 20.
    Ludeman, S. M. (1999) The chemistry of the metabolites of cyclophosphamide. Curr. Pharmaceut. Design 5, 627–643.Google Scholar
  21. 21.
    Cross, P., Marshall, E. S., Baguley, B. C., Finlay, G. J., Matthews, J. H. L., and Wilson, W. R. (1994) Assessment of proliferative assays for radiosensitivity of 542 Baguley et al. tumor cell lines using high throughput microcultures. Rad. Oncol. Invest. 1, 249–260.Google Scholar
  22. 22.
    Marshall, E. S., Matthews, J. H. L., Shaw, J. H. F., Nixon, J., Tumewu, P., Finlay, G. J., et al. (1994) Radiosensitivity of new and established human melanoma cell lines: comparison of [3H]-thymidine incorporation and soft agar clonogenic assays. Eur. J. Cancer 30A, 1370–1376.PubMedCrossRefGoogle Scholar
  23. 23.
    Bridges, A. J. (1996) The epidermal growth factor receptor family of tyrosine kinases and cancer: can an atypical exemplar be a sound therapeutic target? Curr. Med.Chem. 3, 211–226.Google Scholar
  24. 24.
    Mendelsohn, J. and Fan, Z. (1997) Epidermal growth factor receptor family and chemosensitization. J. Natl. Cancer. Inst. 89, 341–343.PubMedCrossRefGoogle Scholar
  25. 25.
    Bridges, A. J., Zhou, H., Cody, D. R., Rewcastle, G. W., McMichael, A., Showalter, H. D., et al. (1996) Tyrosine kinase inhibitors. 8. An unusually steep structureactivity relationship for analogues of 4-(3-bromoanilino)-6,7-dimethoxyquinazoline (PD 153035), a potent inhibitor of the epidermal growth factor receptor. J. Med. Chem. 39, 267–276.PubMedCrossRefGoogle Scholar
  26. 26.
    Finlay, G. J. (1992) In vitro systems for anti-cancer drug screening, in The Search for New Anti-Cancer Drugs, 1st ed. (Waring, M. J. and Ponder, B. A., eds.), Kluwer, Dordrecht, pp. 55–85.CrossRefGoogle Scholar
  27. 27.
    Hamburger, A. W. and Salmon, S. E. (1977) Primary bioassay of human tumor stem cells. Science 197, 461–463.PubMedCrossRefGoogle Scholar
  28. 28.
    Courtenay, V. D., Selby, P. J., Smith, I. E., Mills, J., and Peckham, M. J. (1978) Growth of human tumour cell colonies from biopsies using two soft-agar techniques. Br. J. Cancer 38, 77–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Rubin, R. and Baserga, R. (1995) Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab. Invest. 73, 311–331.PubMedGoogle Scholar
  30. 30.
    Kovar, J., Stunz, L. L., Stewart, B. C., Kriegerbeckova, K., Ashman, R. F., and Kemp, J. D. (1997) Direct evidence that iron deprivation induces apoptosis in murine lymphoma 38C13. Pathobiology 65, 61–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Leist, M., Raab, B., Maurer, S., Rosick, U., and Brigelius-Flohe, R. (1996) Conventional cell culture media do not adequately supply cells with antioxidants and thus facilitate peroxide-induced genotoxicity. Free Radic. Biol. Med. 21, 297–306.PubMedCrossRefGoogle Scholar
  32. 32.
    Brower, M., Carney, D. N., Oie, H. K., Gazdar, A. F., and Minna, J. D. (1986) Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium. Cancer Res. 46, 798–806.PubMedGoogle Scholar
  33. 33.
    Singletary, S. E., Baker, F. L., Spitzer, G., Tucker, S. L., Tomasovic, B., Brock, W. A., et al. (1987) Biological effect of epidermal growth factor on the in vitro growth of human tumors. Cancer Res. 47, 403–406.PubMedGoogle Scholar
  34. 34.
    Meredith, J. E., Fazeli, B., and Schwartz, M. A. (1993) The extracellular matrix as a cell survival factor. Mol. Biol. Cell. 4, 953–961.PubMedGoogle Scholar
  35. 35.
    Ruoslahti, E. and Reed, J. C. (1994) Anchorage dependence, integrins, and apoptosis. Cell 77, 477–78.PubMedCrossRefGoogle Scholar
  36. 36.
    Frisch, S. M., Vuori, K., Ruoslahti, E., and Chanhui, P. Y. (1996) Control of adhesion-dependent cell survival by focal adhesion kinase. J. Cell. Biol. 134, 793–799.PubMedCrossRefGoogle Scholar
  37. 37.
    Baker, F. L., Spitzer, G., Ajani, J. A., Brock, W. A., Lukeman, J., Pathak, S., et al. (1986) Drug and radiation sensitivity measurements of successful primary monolayer culturing of human tumor cells using cell-adhesive matrix and supplemented medium. Cancer Res. 46, 1263–1274.PubMedGoogle Scholar
  38. 38.
    Parkins, C. S. and Steel, G. G. (1990) Growth and radiosensitivity testing of human tumour cells using the adhesive tumour cell culture system. Br. J. Cancer 62, 935–941.PubMedCrossRefGoogle Scholar
  39. 39.
    Girinsky, T., Lubin, R., Pignon, J. P., Chavaudra, N., Gazeau, J., Dubray, B., et al. (1993) Predictive value of in vitro radiosensitivity parameters in head and neck cancers and cervical carcinomas: preliminary correlations with local control and overall survival. Int. J. Rad. Oncol. Biol. Phys. 25, 3–7.CrossRefGoogle Scholar
  40. 40.
    Tanigawa, N., Kitaoka, A., Yamakawa, M., Tanisaka, K., and Kobayashi, H. (1996) In vitro chemosensitivity testing of human tumours by collagen gel droplet culture and image analysis. Anticancer Res. 16, 1925–1930.PubMedGoogle Scholar
  41. 41.
    Weisenthal, L. M., Dill, P. L., Kurnick, N. B., and Lippman, M. E. (1983) Comparison of dye exclusion assays with a clonogenic assay in the determination of drug-induced cytotoxicity. Cancer Res. 43, 258–264.PubMedGoogle Scholar
  42. 42.
    Gazdar, A. F., Steinberg, S. M., Russell, E. K., Linnoila, R. I., Oie, H. K., Ghosh, B. C., et al. (1990) Correlation of in vitro drug-sensitivity testing results with response to chemotherapy and survival in extensive-stage small cell lung cancer: a prospective clinical trial. J. Natl. Cancer. Inst. 82, 117–124.PubMedCrossRefGoogle Scholar
  43. 43.
    Lefer, A. M. and Lefer, D. J. (1993) Pharmacology of the endothelium in ischemiareperfusion and circulatory shock. Annu. Rev. Pharmacol. Toxicol. 33, 71–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Levine, R. L. (1993) Ischemia-from acidosis to oxidation. FASEB J. 7, 1242–1246.PubMedGoogle Scholar
  45. 45.
    Slater, A. F., Stefan, C., Nobel, I., van den Dobbelsteen, D. J., and Orrenius, S. (1995) Signalling mechanisms and oxidative stress in apoptosis. Toxicol. Lett. 82-83, 149–153.PubMedCrossRefGoogle Scholar
  46. 46.
    Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., et al. (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer. Inst. 82, 1107–1112.PubMedCrossRefGoogle Scholar
  47. 47.
    Finlay, G. J., Wilson, W. R., and Baguley, B. C. (1986) Comparison of in vitro activity of cytotoxic drugs toward human carcinoma and leukaemia cell lines. Eur. J. Cancer Clin. Oncol. 22, 655–662.PubMedCrossRefGoogle Scholar
  48. 48.
    Sevin, B. U., Peng, Z. L., Perras, J. P., Ganjei, P., Penalver, M., and Averette, H. E. (1988) Application of an ATP-bioluminescence assay in human tumor chemosensitivity testing. Gynecol. Oncol. 31, 191–204.PubMedCrossRefGoogle Scholar
  49. 49.
    Jordan, M. A., Wendell, K., Gardiner, S., Derry, W. B., Copp, H., and Wilson, L. (1996) Mitotic block induced in HeLa cells by low concentrations of paclitaxel (taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res. 56, 816–825.PubMedGoogle Scholar
  50. 50.
    Fan, S. J., Eldeiry, W. S., Bae, I., Freeman, J., Jondle, D., Bhatia, K., et al. (1994) p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res. 54, 5824–5830.PubMedGoogle Scholar
  51. 51.
    Parmar, J., Marshall, E. S., Charters, G. A., Holdaway, K. M., Shelling, A. N., and Baguley, B. C. (2000) Radiation-induced cell cycle delays and p53 status of early passage melanoma lines. Oncol. Res. 12, 149–155.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Bruce C. Baguley
    • 1
  • Elaine S. Marshall
    • 2
  • Timothy I. Christmas
    • 3
  1. 1.Faculty of Medicine and Health Science, Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
  2. 2.Auckland Cancer Society Research Centre, Faculty of Medicine and Health ScienceUniversity of AucklandAucklandNew Zealand
  3. 3.Respiratory UnitGreen Lane HospitalAuckland

Personalised recommendations