Lung Cancer pp 187-200 | Cite as

Screening of Mutations in the ras Family of Oncogenes by Polymerase Chain Reaction-Based Ligase Chain Reaction

  • Alfredo MartÍnez
  • Teresa A. Lehman
  • Rama Modali
  • James L. Mulshine
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 74)


Lung cancer is the most common fatal type of cancer in the developed world. The overwhelming majority of cases of lung cancer are caused by tobacco products (1), and even with the best therapeutic approaches, less than 15% of diagnosed cases survive 5 years (2). It has been noted that even after smoking cessation, the risk of lung cancer remains elevated for over 15 years (3). This observation clearly indicates that lung cancer has a protracted course developing over a 10-20-yr period, from the moment in which an epithelial cell becomes initiated by chronic exposure to chemical insults until a clinically evident cancer is detected. The long latency period generated by this biology provides an important window of opportunity to find transformed precancerous cells in high-risk populations and intervene in a timely manner.


Magnesium Acetate Ligase Chain Reaction Invariant Primer TaqMan Reaction Positive Control Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Peto, R., López, A. D., Boreham, J., Thun, M., and Heath, C. (1992) Mortality from tobacco in developed countries: indirect estimation from national vital statistics. Lancet 339, 1268–1278.PubMedCrossRefGoogle Scholar
  2. 2.
    Mulshine, J. L. (1998) Lung cancer: current progress, future promise. Primary Care Cancer 18, 9–12.Google Scholar
  3. 3.
    Gaffney, M. and Altshuler, B. (1988) Examination of the role of cigarette smoke in lung carcinogenesis. J. Natl. Cancer Inst. 80, 925–931.PubMedCrossRefGoogle Scholar
  4. 4.
    Aunoble, B., Sanches, R., Didier, E., and Bignon, Y. (2000) Major oncogenes and tumor suppressor genes involved in epithelial ovarian cancer. Int. J. Oncol. 16, 567–576.PubMedGoogle Scholar
  5. 5.
    Sakorafas, G. H., Tsiotou, A. G., and Tsiotos, G. G. (2000) Molecular biology of pancreatic cancer; oncogenes, tumor suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat. Rev. 26, 29–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Minamoto, T., Mai, M., and Ronai, Z. (2000) K-ras mutation: early detection of molecular diagnosis and risk assessment of colorectal, pancreas, and lung cancers. Cancer Detect. Prev. 24, 1–12.PubMedGoogle Scholar
  7. 7.
    Slebos, R. J. and Rodenhuis, S. (1992) The ras gene family in human non-small-cell lung cancer. Monogr. Natl. Cancer Inst. 13, 23–29.PubMedGoogle Scholar
  8. 8.
    Suzuki, Y., Orita, M., Shiraishi, M., Hayashi, K., and Sekiya, T. (1990) Detection of ras gene mutations in human lung cancer by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene 5, 1037–1043.PubMedGoogle Scholar
  9. 9.
    Kumar, R. and Dunn, L. L. (1989) Designed diagnostic restriction fragment length polymorphisms for the detection of point mutations in ras oncogenes. Oncogene Res. 1, 235–241.Google Scholar
  10. 10.
    Jacobson, D. R. and Mills, N. E. (1994) A highly sensitive assay for mutant ras genes and its application to the study of presentation and relapse genotypes in acute leukemia. Oncogene 9, 553–563.PubMedGoogle Scholar
  11. 11.
    Lehman, T. A., Scott, F., Seddon, M., Kelly, K., Dempsey, E. C., Wilson, V. L., et al. (1996) Detection of K-ras oncogene mutations by polymerase chain reactionbased ligase chain reaction. Anal. Biochem. 239, 153–159.PubMedCrossRefGoogle Scholar
  12. 12.
    Scott, F., Modali, R., Lehman, T. A., Seddon, M., Kelly, K., Dempsey, E. C., et al. (1997) High frequency of K-ras codon 12 mutations in bronchoalveolar lavage fluid of patients at high risk for second primary lung cancer. Clin. Cancer Res. 3, 479–482.PubMedGoogle Scholar
  13. 13.
    Scott, F., Cuttitta, F., Treston, A. M., Avis, I., Gupta, P., Ruckdeschel, J., et al. (1993) Prospective trial evaluating immunocytochemical-based sputum techniques for early lung cancer detection: assays for promotion factors in the bronchial lavage. J. Cell. Biochem. Suppl. 17F, 175–183.Google Scholar
  14. 14.
    Wiedmann, M., Wilson, W. J., Czajka, J., Luo, J., Barany, F., and Batt, C. A. (1994) Ligase chain reaction (LCR): overview and applications. PCR Methods Appl. 3 S51–S64.PubMedCrossRefGoogle Scholar
  15. 15.
    Mitsudomi, T., Viallet, J., Mulshine, J. L., Linnoila, R. I., Minna, J. D., and Gazdar, A. E (1991) Mutations of ras genes distinguish a subset of non-small-cell lung cancer cell lines from small-cell lung cancer cell lines. Oncogene 6, 1353–1362.PubMedGoogle Scholar
  16. 16.
    Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W., and Deetz, K. (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR products and nucleic acid hybridization. PCR Methods Appl. 4, 357–362.PubMedCrossRefGoogle Scholar
  17. 17.
    Finney, R. E. and Bishop, J. M. (1993) Predisposition to neoplastic transformation caused by gene replacement of H-ras 1. Science 260, 1524–1527.PubMedCrossRefGoogle Scholar
  18. 18.
    Parada, L. F., Land, H., Weinberg, R. A., Wolf, D., and Rotter, V. (1984) Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312, 649–651.PubMedCrossRefGoogle Scholar
  19. 19.
    Sidransky, D. (1994) Molecular screening; how long can we afford to wait? J. Natl. Cancer Inst. 87, 955–956.CrossRefGoogle Scholar
  20. 20.
    Tockman, M. S., Gupta, P. K., Myers, J. D., Frost, J. K., Baylin, S. B., Gold, E. B., et al. (1988) Sensitive and specific monoclonal antibody recognition of human lung cancer antigen on preserved sputum cells: A new approach to early lung cancer detection. J. Clin. Oncol. 6, 1685–1693.PubMedGoogle Scholar
  21. 21.
    Tockman, M. S., Mulshine, J. L., Piantadosi, S., Erozan, Y. S., Gupta, P. K., Ruckdeschel, J. C., et al. (1997) Prospective detection of preclinical lung cancer: results from two studies of hnRNP expression. Clin. Cancer Res. 3, 2237–2246.PubMedGoogle Scholar
  22. 22.
    Fielding, P. Turnbull, L., Prime, W., Walshaw, M., and Field, J. K. (1999) Heterogeneous nuclear ribonucleoprotein A2/B1 up-regulation in bronchial lavage specimens: a clinical marker of early lung cancer detection. Clin. Cancer Res. 5, 4048–4052.PubMedGoogle Scholar
  23. 23.
    Mulshine, J. L. and Henschke, C. I. (2000) Prospects for lung-cancer screening. Lancet 355, 592–593.PubMedCrossRefGoogle Scholar
  24. 24.
    Wattenberg, L. W., Wiedmann, T. S., Estensen, R. D., Zimmerman, C. L., Galbraith, A. R., Steele, V. E., and Kelloff, G. J. (2000) Chemoprevention of pulmonary carcinogenesis by brief exposures to aerosolized budesonide or beclomethasone dipropionate and by the combination of aerosolized budesonide and dietary myoinositol. Carcinogenesis 21, 179–182.PubMedCrossRefGoogle Scholar
  25. 25.
    Dahl, A. R., Grossi, I. M., Houchens, D. P., Scovell, L. J., Placke, M. E., Imondi, A. R., et al. (2000) Inhaled isotretinoin (13-cis retinoic acid) is an effective lung cancer chemopreventive agent in A/J mice at low doses: a pilot study. Clin. Cancer Res. 8, 3015–3024.Google Scholar
  26. 26.
    Wang, D. L., Marko, M., Dahl, A. R., Engelke, K. S., Placke, M. E., Imondi, A. R., et al. (2000) Topical delivery of 13-cis retinoic acid by inhalation up-regulates expression of rodent lung but not liver retinoic acid receptors. Clin. Cancer Res. 9, 3636–3645.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Alfredo MartÍnez
    • 1
  • Teresa A. Lehman
    • 2
  • Rama Modali
    • 2
  • James L. Mulshine
    • 1
  1. 1.Intervention Section, Department of Cell and Cancer BiologyNational Cancer Institute, National Institutes of HealthBethesda
  2. 2.BioServe Biotechnologies Ltd.Laurel

Personalised recommendations