Lung Cancer pp 101-109 | Cite as

Sensitive Detection of Hypermethylated p16INK4a Alleles in Exfoliative Tissue Material

  • Marcus Schuermann
  • Michael Kersting
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 74)


Epigenetic DNA modification by aberrant methylation of cytosine residues is thought to be an important mechanism contributing to tumorigenesis. Methylation of cytosines normally occurs at distinct sites of the genome containing stretches of repeated CpG (CpG islands) often found within promoter areas of transcribed genes. The cytosine methylation pattern is established very early in development by a continuous process of demethylation and de novo methylation (for review see refs. 1,2). Normally, methylation patterns are faithfully maintained through all subsequent cell divisions and are dependent on DNA methyltransferase activity (3). It has been observed, however, that tumour cells often show extensive upregulation of DNA methyltransferase and at the same time hypomethylation of CpG sites (4). The mechanism of this apparent deregulation in cancer cells is not clear but is generally thought that de novo methylation of otherwise nonmethylated genes is the active component of functional disturbance in cancer (4-6). Methylated islands will recruit special methyl-binding proteins and in conjunction with histone deacetylases are then thought to form repressive chromatin states around the promoter regions, leading to transcriptional loss of genes residing downstream (7). If important genes reside within this region loss of functional control in cell proliferation will ensue. It is therefore not surprising that de novo methylation found in cancer includes many tumor-suppressor genes known to date, thus forming an alternative to gene silencing by inactivating deletions (8).


Aberrant Methylation Bisulfite Conversion Promoter Area Subsequent Cell Division Unmethylated Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bird, A. P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.PubMedCrossRefGoogle Scholar
  2. 2.
    Turker, M. S. and Bestor, T. H. (1997) Formation of methylation patterns in the mammalian genome. Mutat. Res. 386, 119–130.PubMedCrossRefGoogle Scholar
  3. 3.
    Holliday, R. (1990) DNA methylation and epigenetic inheritance. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 326, 329–338.PubMedCrossRefGoogle Scholar
  4. 4.
    Schmutte, C. and Fishel, R. (1999) Genomic instability: first step to carcinogenesis. Anticancer Res. 19, 4665–4696.PubMedGoogle Scholar
  5. 5.
    Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., and Herman, J. G. (2001) Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum. Mol. Genet. 10, 687–692.PubMedCrossRefGoogle Scholar
  6. 6.
    Issa, J. P. (2000) CpG-island methylation in aging and cancer. Curr. Top. Microbiol. Immunol. 249, 101–118.PubMedCrossRefGoogle Scholar
  7. 7.
    Rountree, M. R., Bachman, K. E., Herman, J. G., and Baylin, S. B. (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20, 3156–3165.PubMedCrossRefGoogle Scholar
  8. 8.
    Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M., and Issa, J. P. (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196.PubMedCrossRefGoogle Scholar
  9. 9.
    Gazdar, A. F. (1994) The molecular and cellular basis of human lung cancer. Anticancer. Res. 14, 261–267.PubMedGoogle Scholar
  10. 10.
    Fontanini, G., Vignati, S., Bigini, D., Merlo, G. R., Ribecchini, A., Angeletti, C. A., et al. (1994) Human non-small cell lung cancer: p53 protein accumulation is an early event and persists during metastatic progression. J. Pathol. 174, 23–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Sozzi, G., Miozzo, M., Donghi, R., Pilotti, S., Cariani, C. T., Pastorino, U., et al. (1992) Deletions of 17p and p53 mutations in preneoplastic lesions of the lung. Cancer Res. 52, 6079–6082.PubMedGoogle Scholar
  12. 12.
    Walker, C., Robertson, L. J., Myskow, M. W., Pendleton, N., and Dixon, G. R. (1994) p53 expression in normal and dysplastic bronchial epithelium and in lung carcinomas. Br. J. Cancer 70, 297–303.PubMedCrossRefGoogle Scholar
  13. 13.
    Tockman, M. S. (2000) Advances in sputum analysis for screening and early detection of lung cancer. Cancer Control 7, 19–24.PubMedGoogle Scholar
  14. 14.
    Merlo, A., Herman, J. G., Mao, L., Lee, D. J., Gabrielson, E., Burger, P. C., et al. (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1, 686–692.PubMedCrossRefGoogle Scholar
  15. 15.
    Shapiro, G. I., Park, J. E., Edwards, C. D., Mao, L., Merlo, A., Sidransky, D., et al. (1995) Multiple mechanisms of p16INK4A inactivation in non-small cell lung cancer cell lines. Cancer Res. 55, 6200–6209.PubMedGoogle Scholar
  16. 16.
    Ahrendt, S. A., Chow, J. T., Xu, L. H., Yang, S. C., Eisenberger, C. F., Esteller, M., et al. (1999) Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. J. Natl. Cancer Inst. 91, 332–339.PubMedCrossRefGoogle Scholar
  17. 17.
    Belinsky, S. A., Nikula, K. J., Palmisano, W. A., Michels, R., Saccomanno, G., Gabrielson, E., et al. (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA 95, 11891–11896.PubMedCrossRefGoogle Scholar
  18. 18.
    Issa, J. P., Baylin, S. B., and Belinsky, S. A. (1996) Methylation of the estrogen receptor CpG island in lung tumors is related to the specific type of carcinogen exposure. Cancer Res. 56, 3655–3658.PubMedGoogle Scholar
  19. 19.
    Eguchi, K., Kanai, Y., Kobayashi, K., and Hirohashi, S. (1997) DNA hypermeth-ylation at the D17S5 locus in non-small cell lung cancers: its association with smoking history. Cancer Res. 57, 4913–4915.PubMedGoogle Scholar
  20. 20.
    Sato, M., Mori, Y., Sakurada, A., Fujimura, S., and Horii, A. (1998) The H-cadherin (CDH13) gene is inactivated in human lung cancer. Hum. Genet. 103, 96–101.PubMedCrossRefGoogle Scholar
  21. 21.
    Esteller, M., Sanchez-Cespedes, M., Rosell, R., Sidransky, D., Baylin, S. B., and Herman, J. G. (1999) Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 59, 67–70.PubMedGoogle Scholar
  22. 22.
    Tang, X., Khuri, F. R., Lee, J. J., Kemp, B. L., Liu, D., Hong, W. K., and Mao, L. (2000) Hypermethylation of the death-associated protein (DAP) kinase promoter and aggressiveness in stage I non-small-cell lung cancer. J. Natl. Cancer Inst. 92, 1511–1566.PubMedCrossRefGoogle Scholar
  23. 23.
    Virmani, A. K., Rathi, A., Zochbauer-Muller, S., Sacchi, N., Fukuyama, Y., Bryant, D., et al. (2000) Promoter methylation and silencing of the retinoic acid receptorbeta gene in lung carcinomas. J. Natl. Cancer Inst. 92, 1303–1307.PubMedCrossRefGoogle Scholar
  24. 24.
    Zochbauer-Muller, S., Fong, K. M., Virmani, A. K., Geradts, J., Gazdar, A. F., and Minna, J. D. (2001) Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 61, 249–255.PubMedGoogle Scholar
  25. 25.
    Tockman, M. S. and Mulshine, J. L. (2000) The early detection of occult lung cancer. Chest Surg. Clin. North Am. 10, 737–749.Google Scholar
  26. 26.
    Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93, 9821–9826.PubMedCrossRefGoogle Scholar
  27. 27.
    Kersting, M., Friedl, C., Kraus, A., Behn, M., Pankow, W., and Schuermann, M. (2000) Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J. Clin. Oncol. 18, 3221–3229.PubMedGoogle Scholar
  28. 28.
    Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. USA 89, 1827–1831.PubMedCrossRefGoogle Scholar
  29. 29.
    Stöger, R., Kajimura, T. M., Brown, W. T., and Laird, C. D. (1997) Epigenetic variation illustrated by DNA methylation patterns of the fragile-X gene FMR1. Hum. Mol. Genet. 6, 1791–1801.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang, L., Cui, X., Schmitt, K., Navidi, W., and Arnheim, N. (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc. Natl. Acad. Sci. USA 89, 5847–5851.PubMedCrossRefGoogle Scholar
  31. 31.
    Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., and Belinsky, S. A. (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 60, 5954–5958.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2003

Authors and Affiliations

  • Marcus Schuermann
    • 1
  • Michael Kersting
    • 2
  1. 1.Department of Hematology, Oncology,and ImmunologyPhilipps-University of MarburgMarburgGermany
  2. 2.GATC Biotech AGKonstanzGermany

Personalised recommendations