Skip to main content

Mutagenesis of H. influenzae

  • Protocol
Haemophilus influenzae Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 71))

  • 741 Accesses

Abstract

With the advent of new techniques to explore bacterial pathogenesis, such as signature tagged mutagenesis and site-directed mutagenesis coupled with the whole genome sequence and bioinformatics, there is a need for clear descriptions of the available mutagenesis tools for individual pathogens. Here we describe those that have been applied to Haemophilus influenzae and discuss their advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Joset F. and Guespin-Michel J. (1993) Prokaryotic genetics. in Genome Organization, Transfer and Plasticity. Blackwell Scientific Publications, Oxford, U.K.

    Google ScholarĀ 

  2. Gwinn M. L., Stellwagen A. E., Craig N. L., Tomb J. F., and Smith H.O. (1997) In vitro Tn7 mutagenesis of Haemophilus influenzae Rd and characterization of the role of atpA in transformation. J. Bacteriol. 179, 7315ā€“7320.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Gwinn M. L., Ramanathan R., Smith H. O., and Tomb J. F. (1998) A new transformation-deficient mutant of Haemophilus influenzae Rd with normal DNA uptake. J. Bacteriol. 180, 746ā€“748.

    CASĀ  PubMedĀ  Google ScholarĀ 

  4. Goodgal S. H. and Mitchell M. A. (1990) Sequence and uptake specificity of cloned sonicated fragments of Haemophilus influenzae DNA. J. Bacteriol. 172, 5924ā€“5928.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Claus H., Frosch M., and Vogel U. (1998) Identification of a hotspot for transformation of Neisseria meningitidis by shuttle mutagenesis using signaturetagged transposons. Mol. Gen. Genet. 259, 363ā€“371.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Mehr I. J. and Seifert H. S. (1997) Random shuttle mutagenesis: gonococcal mutants deficient in pilin antigenic variation. Mol. Microbiol. 23, 1121ā€“1131.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Whitby P. W., Morton D. J., and Stull T. L. (1998) Construction of antibiotic resistance cassettes with multiple paired restriction sites for insertional mutagenesis of Haemophilus influenzae. FEMS. Microbiol. Lett. 158, 57ā€“60.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Sharetzsky C., Edlind T. D., Li Puma J. J., and Stull T. L. (1991) A novel approach to insertional mutagenesis of Haemophilus influenzae. J. Bacteriol. 173, 1561ā€“1564.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Dougherty B. A. and Smith H. O. (1999) Identification of Haemophilus influenzae Rd transformation genes using cassette mutagenesis. Microbiol. 145, 401ā€“409.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Schiestl R. H. and Petes T. D. (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88, 7585ā€“7589.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Hensel M. and Holden D. W. (1996) Molecular genetic aproaches for the study of virulence in both pathogenic bacteria and fungi. Microbiology 142. 1049ā€“1058.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., and Holden D. W. (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400ā€“403.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Akerley B. J., Rubin E. J., Camilli A., Lampe D. J., Robertson H. M., and Mekalanos J. J. (1998) Systematic identification of essential genes by in-vitro mariner mutagenesis. Proc. Natl. Acad. Sci. USA 95, 8927ā€“8932.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Kraiss A., Schlor S., and Reidl J. (1998) In-vivo transposon mutagenesis of Haemophilus influenzae. Appl. Environ. Microbiol. 64, 4697ā€“4702.

    CASĀ  PubMedĀ  Google ScholarĀ 

  15. Jorgensen R. A., Rothstein S. J., and Reznikoff W. S. (1979) A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol. Gen. Genet. 177, 65ā€“72.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Berg D. E. (1989) Transposon Tn5. in Mobile DNA., (eiBerg D. E. and Howe M. M., eds.) American Society for Microbiology, Washington, D C., pp. 185ā€“210

    Google ScholarĀ 

  17. Reznikoff W. S. (1993) The Tn5 transposon. Annu. Rev. Microbiol. 47, 945ā€“963.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Berg C. M. and Berg D. E. (1987) Transposable element tools for microbial genetics, in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, (eiNeidhardt F. C., Ingraham J. L., Magasanik B., et al., eds.), American Society for Microbiology, Washington, D. C., p. 1071.

    Google ScholarĀ 

  19. Berg C. M., Berg D. E., and Groisman E. A. (1989) Transposable elements and the genetic engineering of bacteria. in Mobile DNA, (eiBerg D. E. and Howe M. M., eds.), American Society for Microbiology, Washington, D. C., pp. 879ā€“926.

    Google ScholarĀ 

  20. Sasakawa C. and Yoshikawa M. (1987) A series of Tn5 variants with various drugresistance markers and suicide vector for transposon mutagenesis. Gene. 56, 283ā€“288.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. de Lorenzo V. and Timmis K. N. (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5-and Tn10-derived minitransposons. Methods Enzymol. 235, 386ā€“405.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Simon R., Quandt J., and Klipp W. (1989) New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Gene 80, 161ā€“169.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. de Lorenzo V., Herrero M., Jakubzik U., and Timmis K. N. (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172, 6568ā€“6572.

    PubMedĀ  Google ScholarĀ 

  24. Deich R. A. and Green B. A. (1987) Mobilization of Haemophilus influenzae chromosomal markers by an Escherichia coli Fā€² factor. J. Bacteriol. 169, 1905ā€“1910.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Tascon R. I., Rodriguez-Ferri E. F., Gutierrez-Martin C. B., Rodriguez-Barbosa I., Berche P., and Vazquez-Boland J. A. (1993) Transposon mutagenesis in Actinobacillus pleuropneumoniae with a Tn10 derivative. J. Bacteriol. 175, 5717ā€“5722.

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Vosman B., Kok R., and Hellingwerf K. J. (1991) Random insertional mutagenesis, in Acinetobacter, in The Biology of Acinetobacter. Taxonomy, Clinical Importance, Molecular Biology, Physiology, Industrial Relevance, (eiTowner K. J., Bergegue-Berezin E., and Fewson C. A., eds.), Plenum Press, New York, pp. 183ā€“189.

    Google ScholarĀ 

  27. Wilson P. J. (1990) Haemophilus, Actinobacillus, Pasteurella: mechanisms of resistance and antibiotic therapy. Can. J. Vet. Res. 54, s73ā€“s77.

    Google ScholarĀ 

  28. Goryshin I. Y. and Reznikoff W. S. (1998) Tn5 in-vitro transposition. J. Biol. Chem. 273, 7367ā€“7374.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Craig N. L. (1996) Transposon Tn7. Curr. Top. Microbiol. Immunol. 204, 27ā€“48.

    CASĀ  PubMedĀ  Google ScholarĀ 

  30. Craig N. L. (1991) Tn7: a target site-specific transposon. Mol. Microbiol. 5, 2569ā€“2573.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Stellwagen A. E. and Craig N. L. (1997) Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7. Genetics 145, 573ā€“585.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Bainton R. J., Kubo K. M., Feng J. N., and Craig N.L. (1993) Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in-vitro system. Cell 72, 931ā€“943.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Stellwagen A. E. and Craig N. L. (1997) Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO. J. 16, 6823ā€“6834.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Lee C. H., Bhagwat A., and Heffron F. (1983) Identification of a transposon Tn3 sequence required for transposition immunity. Proc. Natl. Acad. Sci. USA 80, 6765ā€“6769.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Mizuuchi K. (1992) Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu. Rev. Biochem. 61, 1011ā€“1051.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Levy S. B., Buu-Hoi A., and Marshall B. (1984) Transposon Tn10-like tetracycline resistance determinants in Haemophilus parainfluenzae. J. Bacteriol. 160, 87ā€“94.

    CASĀ  PubMedĀ  Google ScholarĀ 

  37. Chandler M. S. (1992) The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae Rd. Proc. Natl. Acad. Sci. USA 89, 1626ā€“1630.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Chandler M. S. and Smith R. A. (1996) Characterization of the Haemophilus influenzae topA locus: DNA topoisomerase I is required for genetic competence. Gene 169, 25ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Tomb J. F., Barcak G. J., Chandler M. S., Redfield R. J., and Smith H.O. (1989) Transposon mutagenesis, characterization, and cloning of transformation genes of Haemophilus influenzae Rd. J. Bacteriol. 171, 3796ā€“3802.

    CASĀ  PubMedĀ  Google ScholarĀ 

  40. Tomb J. F., el-Hajj H., and Smith H. O. (1991) Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd. Gene 104, 1ā€“10.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Kleckner N. (1991) Uses of transposons with emphasis on Tn10. Methods Enzymol. 204, 139ā€“180.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Way J. C., Davis M. A., Morisato D., Roberts D. E., and Kleckner N. (1984) New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32, 369ā€“379.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Way J. C. and Kleckner N. (1984) Essential sites at transposon Tn 10 termini. Proc. Natl. Acad. Sci. USA 81, 3452ā€“3456.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Elliott T. and Roth J. R. (1988) Characterization of Tn10d-Cam: a transposition-defective Tn10 specifying chloramphenicol resistance. Mol. Gen. Genet. 213, 332ā€“338.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Reidl J. and Mekalanos J. J. (1995) Characterization of Vibrio cholerae bacteriophage K139 and use of a novel mini-transposon to identify a phage-encoded virulence factor. Mol. Microbiol. 18, 685ā€“701.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Chang A. C. Y. and Cohen S. N. (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141ā€“1156.

    CASĀ  PubMedĀ  Google ScholarĀ 

  47. Rose R. E. (1988) The nucleotide sequence of pACYC184. Nucleic Acid Res. 16, 355ā€“356.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Reidl J. and Mekalanos J. J. (1996) Lipoprotein e(P4) is essential for hemin uptake by Haemophilus influenzae. J. Exp. Med. 183, 621ā€“629.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Morisato D., Way J. C., Kim H. J., and Kleckner N. (1983) Tn10 transposase acts preferentially on nearby transposon ends in-vivo. Cell 32, 799ā€“807.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Herrero M., de Lorenzo V., and Timmis K. N. (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J. Bacteriol. 172, 6557ā€“6567.

    CASĀ  PubMedĀ  Google ScholarĀ 

  51. Simon R., Priefer U., and Puhler A. (1983) A broad host range mobilization system for in-vivo genetic engineering: transposon mutagensis in Gram-negative bacteria. BioTechnology 784ā€“791.

    Google ScholarĀ 

  52. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., and Wanner B. L. (1996) Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Miller V. L. and Mekalanos J. J. (1988) A novel suicide vector and its use in constructions of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170, 2575ā€“2583.

    CASĀ  PubMedĀ  Google ScholarĀ 

  54. Manoil C. and Beckwith J. (1985) TnphoA: a transposon probe for protein export signals. Proc. Natl. Acad. Sci. USA 82, 8129ā€“8133.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. Kroll J. S., Loynds B., Brophy L. N., and Moxon E. R. (1990) The bex locus in encapsulated Haemophilus influenzae: a chromosomal region involved in capsule polysaccharide export. Mol. Microbiol. 4, 1853ā€“1862.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Kroll J. S. and Moxon E. R. (1990 b) Capsulation in distantly related strains of Haemophilus influenzae type b: genetic drift and gene transfer at the capsulation locus. J. Bacteriol. 172, 1374ā€“1379.

    CASĀ  PubMedĀ  Google ScholarĀ 

  57. Tadayyon M. and Broome-Smith J. K. (1992) TnblaM: a transposon for directly tagging bacterial genes encoding cell envelope and secreted proteins. Gene 111, 21ā€“26.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Franke A. E. and Clewell D. B. (1981) Evidence for conjugal transfer of a Streptococcus faecalis transposon (Tn916) from a chromosomal site in the absence of plasmid DNA. Cold Spring Harb. Symp. Quant. Biol. 45(1), 77ā€“80.

    CASĀ  PubMedĀ  Google ScholarĀ 

  59. Gawron-Burke C. and Clewell D. B. (1984) Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from Gram-positive bacteria. J. Bacteriol. 159, 214ā€“221.

    CASĀ  PubMedĀ  Google ScholarĀ 

  60. Rice L. B. (1998) Tn916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother. 42, 1871ā€“1877.

    CASĀ  PubMedĀ  Google ScholarĀ 

  61. Scott J. R. and Churchward G. G. (1995). Conjugative transposition. Annu. Rev. Microbiol. 49, 367ā€“397.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  62. Clewell D. B., Flannagan S. E., and Jaworski D. D. (1995) Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3, 229ā€“236.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Yamaguchi N., Kawasaki M., Yamashita Y., Nakashima K., and Koga T. (1995) Role of the capsular polysaccharide-like serotype-specific antigen in resistance of Actinobacillus actinomycetemcomitans to phagocytosis by human polymorphonuclear leukocytes. Infect. Immun. 63, 4589ā€“4594.

    CASĀ  PubMedĀ  Google ScholarĀ 

  64. Sato S., Takamatsu N., Okahashi N., Matsunoshita N., Inoue M., Takehara T., et al. (1992) Construction of mutants of Actinobacillus actinom cetemcomitans defective in serotype b-specific polysaccharide antigen by insertion of transposon Tn916. J. Gen. Microbiol. 138, 1203ā€“1209.

    CASĀ  PubMedĀ  Google ScholarĀ 

  65. Willi K., Sandmeier H., Kulik E. M., and Meyer J. (1997) Transduction of antibiotic resistance markers among Actinobacillus actinomycetemcomitans strains by temperate bacteriophages Aa phi 23. Cell. Mol. Life Sci. 53, 904ā€“910.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Kauc L. and Goodgal S. H. (1989) Introduction of transposon Tn916 DNA into Haemophilus influenzae and Haemophilus parainfluenzae. J. Bacteriol. 171, 6625ā€“6628.

    CASĀ  PubMedĀ  Google ScholarĀ 

  67. Holland J., Towner K. J., and Williams P. (1992) Tn916 insertion mutagenesis in Escherichia coli and Haemophilus influenzae type b following conjugative transfer. J. Gen. Microbiol. 138, 509ā€“515.

    CASĀ  PubMedĀ  Google ScholarĀ 

  68. Clewell D. B., Flannagan S. E., Zitzow L. A., Su Y. A., He P., Senghas E., et al. (1991) Properties of conjugative transposon Tn916, in Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci, (eiDunny G. M., Cleary P. P., and McKay L. L., eds.), American Society for Microbiology, Washington, D.C., pp. 39ā€“44.

    Google ScholarĀ 

  69. Scott J. R. (1992) Sex and the single circle: conjugative transposition. J. Bacteriol. 174, 6005ā€“6010.

    CASĀ  PubMedĀ  Google ScholarĀ 

  70. Scott J. R. (1993) Conjugative transposons, in Bacillus subtilis and Other Grampositive Bacteria, (eiSonenshein A. L., Hoch J. A., and Losick R., eds.), Am. Soc. Microbiol., Washington, D.C., pp. 597ā€“614.

    Google ScholarĀ 

  71. Clewell D. B., and Flannagan S. E. (1993) The conjugative transposons of Grampositive bacteria, in Bacterial Conjugation, (Clewell D. B., ed.), k: Plenum Press, New York, pp. 369ā€“393.

    Google ScholarĀ 

  72. Salyers A. A., Shoemaker N. B., Stevens A. M., and Li L. Y. (1995) Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59, 579ā€“590.

    CASĀ  PubMedĀ  Google ScholarĀ 

  73. Courvalin P. and Carlier C. (1987) Tn1545: a conjugative shuttle transposon. Mol. Gen. Genet. 206, 259ā€“264.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Courvalin P. and Carlier C. (1986) Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol. Gen. Genet. 205, 291ā€“297.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Jaworski D. D. and Clewell D. B. (1995) A functional origin of transfer (oriT) on the conjugative transposon Tn916. J. Bacteriol. 177, 6644ā€“6651.

    CASĀ  PubMedĀ  Google ScholarĀ 

  76. Jaworski D. D., Flannagan S. E., and Clewell D. B. (1996) Analyses of traA, int-Tn, and xis-Tn mutations in the conjugative transposon Tn916 in Enterococcus faecalis. Plasmid 36, 201ā€“208.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  77. Flannagan S. E., Zitzow L. A., Su Y. A., and Clewell D. B. (1994) Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32, 350ā€“354.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Senghas E., Jones J. M., Yamamoto M., Gawron-Burke C., and Clewell D. B. (1988) Genetic organization of the bacterial conjugative transposon Tn916. J. Bacteriol. 170, 245ā€“249.

    CASĀ  PubMedĀ  Google ScholarĀ 

  79. Clewell D. B., Flannagan S. E., Ike Y., Jones J. M., and Gawron-Burke C. (1988) Sequence analysis of termini of conjugative transposon Tn916. J. Bacteriol. 170, 3046ā€“3052.

    CASĀ  PubMedĀ  Google ScholarĀ 

  80. Poyart-Salmeron C., Trieu-Cuot P., Carlier C., and Courvalin P. (1989) Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMB. J. 8, 2425ā€“2433.

    CASĀ  Google ScholarĀ 

  81. Lu F. and Churchward G. (1994) Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 13, 1541ā€“1548.

    CASĀ  PubMedĀ  Google ScholarĀ 

  82. Poyart-Salmeron C., Trieu-Cuot P., Carlie R. C., and Courvalin P. (1990) The integration-excision system of the conjugative transposon Tn 1545 is structurally and functionally related to those of lambdoid phages. Mol. Microbiol. 4, 1513ā€“1521.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  83. Su Y. A. and Clewell D. B. (1993) Characterization of the left 4 kb of conjugative transposon Tn916: determinants involved in excision. Plasmid. 30, 234ā€“250.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  84. Scott J. R., Kirchman P. A., and Caparon M. G. (1988) An intermediate in transposition of the conjugative transposon Tn916. Proc. Natl. Acad. Sci. USA 85, 4809ā€“4813.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Caparon M. G. and Scott J. R. (1989) Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell 59, 1027ā€“1034.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  86. Marra D. and Scott J. R. (1999) Regulation of excision of the conjugative transposon Tn916. Mol. Microbiol. 31, 609ā€“621.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  87. Taylor K. L. and Churchward G. (1997) Specific DNA cleavage mediated by the integrase of conjugative transposon Tn916. J. Bacteriol. 179, 1117ā€“1125.

    CASĀ  PubMedĀ  Google ScholarĀ 

  88. Argos P., Landy A., Abremski K., Egan J. B., Haggard-Ljungquist E., Hoess R. H., et al. (1986) The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO. J. 5, 433ā€“440.

    CASĀ  PubMedĀ  Google ScholarĀ 

  89. Lu F. and Churchward G. (1995) Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J. Bacteriol. 177, 1938ā€“1946.

    CASĀ  PubMedĀ  Google ScholarĀ 

  90. Rudy C. K., Scott J. R., and Churchward G. (1997) DNA binding by the Xis protein of the conjugative transposon Tn916. J. Bacteriol. 179, 2567ā€“2572.

    CASĀ  PubMedĀ  Google ScholarĀ 

  91. Celli J. and Trieu-Cuot P. (1998) Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Microbiol. 28, 103ā€“117.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  92. Bringel F., Van Alstine G. L., and Scott J. R. (1992) Transfer of Tn916 between Lactococcus lactis subsp. lactis strains is nontranspositional: evidence for a chromosomal fertility function in strain MG1363. J. Bacteriol. 174, 5840ā€“5847.

    CASĀ  PubMedĀ  Google ScholarĀ 

  93. Storrs M. J., Poyart-Salmeron C., Trieu-Cuot P., and Courvalin P. (1991) Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J. Bacteriol. 173, 4347ā€“4352.

    CASĀ  PubMedĀ  Google ScholarĀ 

  94. Bertram J., Stratz M., and Durre P. (1991) Natural transfer of conjugative transposon Tn916 between Gram-positive and Gram-negative bacteria. J. Bacteriol. 173, 443ā€“448.

    CASĀ  PubMedĀ  Google ScholarĀ 

  95. Gawron-Burke C. and Clewell D. B. (1982) A transposon in Streptococcus faecalis with fertility properties. Nature 300, 281ā€“284.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  96. Norgren M. and Scott J. R. (1991) The presence of conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element. J. Bacteriol. 173, 319ā€“324.

    CASĀ  PubMedĀ  Google ScholarĀ 

  97. Johnson R. C., Yin J. C., and Reznikoff W. S. (1982). Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat. Cell 30, 873ā€“882.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Jaworski D. D. and Clewell D. B. (1994) Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J. Bacteriol. 176, 3328ā€“3335.

    CASĀ  PubMedĀ  Google ScholarĀ 

  99. Manganelli R., Romano L., Ricci S., Zazzi M., and Pozzi G. (1995) Dosage of Tn916 circular intermediates in Enterococcus faecalis. Plasmid 34, 48ā€“57.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  100. Swartley J. S., McAllister C. F., Hajjeh R. A., Heinrich D. W., and Stephens D. S. (1993) Deletions of Tn916-like transposons are implicated in tetM-mediated resistance in pathogenic Neisseria. Mol. Microbiol. 10, 299ā€“310.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  101. Scott J. R., Bringel F., Marra D., Van Alstine G., and Rudy C. K. (1994) Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol. Microbiol. 11, 1099ā€“1108.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  102. Trieu-Cuot P., Poyart-Salmeron C., Carlier C., and Courvalin P. (1993) Sequence requirements for target activity in site-specific recombination mediated by the Int protein of transposon Tn 1545. Mol. Microbiol. 8, 179ā€“185.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  103. Trieu-Cuot P., Carlier C., Poyart-Salmeron C., and Courvalin P. (1991) An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. Gene 106, 21ā€“27.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  104. Gaillard J. L., Berche P., Frehel C., Gouin E., and Cossart P. (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65, 1127ā€“1141.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  105. High N. J., Deadman M. E., Hood D. W., and Moxon E. R. (1996) The identification a novel gene required for lipopolysaccharide biosynthesis by Haemophilus influenzae RM7004, using transposon Tn916 mutagenesis. FEMS Microbiol. Lett. 145, 325ā€“331.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  106. Nelson K. E., Richardson D. L., and Dougherty B. A. (1997) Tn916 transposition in Haemophilus influenzae Rd: preferential insertion into noncoding DNA. Microb. Comp. Genomics 2, 313ā€“321.

    CASĀ  PubMedĀ  Google ScholarĀ 

  107. Shaw J. H. and Clewell D. B. (1985) Complete nucleotide sequence of macrolide-lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis. J. Bacteriol. 164, 782ā€“796.

    CASĀ  PubMedĀ  Google ScholarĀ 

  108. Perkins J. B. and Youngman P. J. (1984) A physical and functional analysis of Tn917, a Streptococcus transposon in the Tn3 family that functions in Bacillus. Plasmid 12, 119ā€“138.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  109. Kuramitsu H. K. and Casadaban M. J. (1986) Transposition of the gram-positive transposon Tn917 in Escherichia coli. J. Bacteriol. 167, 711,712.

    Google ScholarĀ 

  110. Mei J. M., Nourbakhsh F., Ford C. W., and Holden D. W. (1997) Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol. Microbiol. 26, 399ā€“407.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  111. Schwan W. R, Coulter S. N, Ng E. Y., Langhorne M. H., Ritchie H. D., Brody L. L, et al. (1998) Identification and characterization of the PutP proline permease that contributes to in-vivo survival of Staphylococcus aureus in animal models. Infect. Immun. 66, 567ā€“572.

    CASĀ  PubMedĀ  Google ScholarĀ 

  112. Foster T. J. (1987) The use of mutants for defining the role of virulence factors in-vivo, in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. (eiNeidhardt F. C., Ingraham J. L., Magasanik B., et al., eds.), American Society for Microbiology Washington, DC, pp. 173ā€“191.

    Google ScholarĀ 

  113. Berg C. M., Vartak N. B., Wang G., Xu X., Liu L., MacNeil D. J., et al. (1992) The Ī¼Ī»Ī“-1 element, a small gd (Tn1000) derivative useful for plasmid mutagenesis, allele replacement and DNA sequencing. Gene 113, 9ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  114. McLaughlin R., Spinola S. M., and Apicella M. A. (1992) Generation of lipooligosaccharide mutants of Haemophilus influenzae type b. J. Bacteriol. 174, 6455ā€“6459.

    CASĀ  PubMedĀ  Google ScholarĀ 

  115. Abu Kwaik Y., McLaughlin R. E., Apicella M. A.,and Spinola S. M. (1992) Cloning and analysis of lipooligosaccharide synthesis genes of Haemophilus influenzae type b that assemble or expose a 2-keto-3-deoxyoctulosonic acid epitope in Escherichia coli. J. Infect. Dis. 165, 195ā€“196.

    Google ScholarĀ 

  116. Abu Kwaik Y., McLaughlin R. E., Apicella M. A., and Spinola S. M. (1991) Analysis of Haemophilus influenzae type b lipooligosaccharide-synthesis genes that assemble or expose a 2-keto-3-deoxyoctulosonic acid epitope. Mol. Microbiol. 5, 2475ā€“2480.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  117. Lampe D. J., Churchill M. E. A., and Robertson H. M. (1996) A purified mariner transposase is sufficient to mediate transposition in-vitro. EMBO J. 15, 5470ā€“5479.

    CASĀ  PubMedĀ  Google ScholarĀ 

  118. Nassif X., Puaoi D., and So M. (1991) Transposition of Tn1545-Ī” 3 in the pathogenic Neisseriae: a genetic tool for mutagenesis. J. Bacteriol. 173, 2147ā€“2154.

    CASĀ  PubMedĀ  Google ScholarĀ 

  119. Korch C., Hagblom P., Ohman H., Goransson M., and Normark S. (1985) Cryptic plasmid of Neisseria gonorrhoeae: complete nucleotide sequence and genetic organization. J. Bacteriol. 163, 430ā€“438.

    CASĀ  PubMedĀ  Google ScholarĀ 

  120. Sarandopoulos S. and Davies J. K. (1993) Genetic organization and evolution of the cryptic plasmid of Neisseria gonorrhoeae. Plasmid 29, 206ā€“221.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  121. Stein D. C., Young F. E., Tenove F. C., and Clark V. L. (1983) Characterization of a chimeric beta-lactamase plasmid of Neisseria gonorrhoeae which can function in Escherichia coli. Mol. Gen. Genet. 189, 79ā€“84.

    ArticleĀ  Google ScholarĀ 

  122. Stein D. C., Silver L. E., Clark V. L., and Tenover F. C. (1983) Construction and characterization of a new shuttle vector, pLES2, capable of functioning in Escherichia coli and Neisseria gonorrhoeae. Gene 25, 241ā€“247.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  123. Caillaud F., Trieu-Cuot P., Carlier C., and Courvalin P. (1987) Nucleotide sequence of the kanamycin resistance determinant of the pneumococcal transposon Tn1545: evolutionary relationships and transcriptional analysis of aphA-3 genes. Mol. Gen. Genet. 207, 509ā€“513.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  124. Trieu-Cuot P. and Courvalin P. (1983) Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3ā€²5ā€²-aminoglycoside phosphotransferase type III. Gene 23, 331ā€“341.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  125. Kay R. and McPherson J. (1987) Hybrid pUC vectors for addition of new restriction enzyme sites to the ends of DNA fragments. Nucleic Acids Res. 15, 2778.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Herbert, M.A. (2003). Mutagenesis of H. influenzae . In: Herbert, M.A., Hood, D.W., Moxon, E.R. (eds) Haemophilus influenzae Protocols. Methods in Molecular Medicineā„¢, vol 71. Humana Press. https://doi.org/10.1385/1-59259-321-6:185

Download citation

  • DOI: https://doi.org/10.1385/1-59259-321-6:185

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-928-5

  • Online ISBN: 978-1-59259-321-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics