Skip to main content
Book cover

E. coli pp 229–241Cite as

Detection of Shiga Toxin-Mediated Programmed Cell Death and Delineation of Death-Signaling Pathways

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 73))

Abstract

Cells die by one of two morphologically distinct processes: necrosis or apoptosis. In general, necrosis is considered to be a pathologic process usually following a severe insult to the cell (1). During necrosis, the plasma membrane loses selective permeability and the cell begins to swell. The organellar membranes also lose integrity and are unable to maintain normal function. Condensation of chromatin may occur, but it tends to be irregular. Leakage of cytoplasmic contents evokes an inflammatory response in the surrounding tissues. Overall, the configuration of the necrotic cell is maintained until its removal by professional phagocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kerr J. F., Gobe G. C., Winterford C. M., and Harmon B. V. (1995) Anatomical methods in cell death. Methods Cell. Biol. 46, 1–27.

    Article  CAS  PubMed  Google Scholar 

  2. Nagata S. (2000) Apoptotic DNA fragmentation. Exp.Cell Res. 256, 12–18.

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Sasson S. A., Sherman Y., and Gavrieli Y. (1995) Identification of dying cells—in situ staining. Methods Cell. Biol. 46, 29–39.

    Article  CAS  PubMed  Google Scholar 

  4. Aragane Y., Kulms D., Metze D., Wilkes G., Poppelmann B., Luger T. A., et al. (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (FAS/ APO-1) independently of its ligand CD95L. J. Cell Biol. 140, 171–182.

    Article  CAS  PubMed  Google Scholar 

  5. Rich T., Watson C. J., and Wyllie A. (1999) Apoptosis: the germs of death. Nat. Cell Biol. 1, E69–E71.

    Article  CAS  PubMed  Google Scholar 

  6. Stennicke H. R. and Salvesen G. S (2000) Caspases—controlling intracellular signals by protease zymogen activation. Biochem. Biophys. Acta 1477, 299–306.

    Article  CAS  PubMed  Google Scholar 

  7. Tsujimoto Y. and Shimuzu S. (2000) Bcl-2 family: life or death switch. FEBS Lett. 466, 6–10.

    Article  CAS  PubMed  Google Scholar 

  8. Kroemer G. and Reed J. C. (2000) Mitochondrial control of cell death. Nat. Med. 6, 513–519.

    Article  CAS  PubMed  Google Scholar 

  9. Green D. R. (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102, 1–4.

    Article  CAS  PubMed  Google Scholar 

  10. Verhagen A. M., Ekert P. G., Pakusch M., Silke J., Connolly L. M., Reid G. E., et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antogonizing IAP proteins. Cell 102, 43–53.

    Article  CAS  PubMed  Google Scholar 

  11. Du C., Fang M., Li Y., Li L., and Wang X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.

    Article  CAS  PubMed  Google Scholar 

  12. Osborne B. A., Smith S. W., Liu Z. G., McLaughlin K. A., and Schwartz L. M. (1995) Transient transfection assays to examine the requirement of putative cell death genes. Methods Cell. Biol. 46, 99–106.

    Article  CAS  PubMed  Google Scholar 

  13. Jones N. L., Islur A., Haq R., Mascarenhas M., Karmali M. A., Perdue M., et al. (2000) Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am. J. Physiol. 278, G811–G819.

    CAS  Google Scholar 

  14. Weinrauch Y. and Zychlinsky A. (1999) The induction of apoptosis by bacterial pathogens. Annu. Rev. Microbiol. 53, 155–187.

    Article  CAS  PubMed  Google Scholar 

  15. Inward C. D., Williams J., Chant I., Crocker J., Milford D. V., Rose P. E., et al. (1995) Verocytotoxin-1 induces apoptosis in Vero cells. J. Infect. 30, 213–218.

    Article  CAS  PubMed  Google Scholar 

  16. Mangeney M., Lingwood C. A., Taga S., Caillou B., Tursz T., and Wiels J. (1993) Apoptosis induced in Burkitt’s lymphoma cells via Gb3/ CD77, a glycolipid antigen. Cancer Res. 53, 5314–5319.

    CAS  PubMed  Google Scholar 

  17. Karpman D., Hakansson A., Perez M. T., Isaksson C., Carlemalm E., Caprioli A. et al. (1998) Apoptosis of renal cortical cells in the hemolytic uremic syndrome: in vivo and in vitro studies. Infect. Immun. 66, 636–644.

    CAS  PubMed  Google Scholar 

  18. Petric M., Karmali M. A., Richardson S., and Cheung R. (1987) Purification and biological properties of Escherichia coli verocytotoxin. FEMS Microbiol. Lett. 41, 63–68.

    Article  CAS  Google Scholar 

  19. Nakagawa I., Nakata M., Kawabata S., and Hamada S. (1999) Regulated expression of the Shiga toxin B gene induces apoptosis of mammalian fibroblasts. Mol. Microbiol. 33, 1190–1199.

    Article  CAS  PubMed  Google Scholar 

  20. Zanke B. W., Lee C., Arab S., and Tannock I. F. (1998) Death of tumor cells after intracellular acidification is dependent on stress-activated protein kinases (SAPK/JNK) pathway activation and cannot be inhibited by Bcl-2 expression or interleukin 1beta-converting enzyme inhibition. Cancer Res. 58, 2801–2808.

    CAS  PubMed  Google Scholar 

  21. Koyama A. H. and Miwa Y. (1997) Suppression of apoptotic DNA fragmentation in herpes simplex virus type 1-infected cells. J. Virol. 71, 2567–2571.

    CAS  PubMed  Google Scholar 

  22. Sherwood S. W. and Schimke R. T. (1995) Cell cycle analysis of apoptosis using flow cytometry. Methods Cell. Biol. 46, 77–97.

    Article  CAS  PubMed  Google Scholar 

  23. Jones N. L., Day A. S., Jennings H. A., and Sherman P. M. (1999) Helicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression. Infect. Immun. 67, 4237–4242.

    CAS  PubMed  Google Scholar 

  24. Lala P., Ito S., and Lingwood C. (2000) Retroviral transfection of Madin-Darby canine kidney cells with human MDR1 results in a major increase in globotriaosylceramide and 10(5)–10(6) fold increased cell sensitivity to verocytotoxin. Role of p-glycoprotein in glycolipid synthesis. J. Biol. Chem. 275, 6246–6251.

    Article  CAS  PubMed  Google Scholar 

  25. Ashwell J. D., Lu F. W., and Vacchio M. S. (2000) Glucocorticoids in T cell development and function. Annu. Rev. Immunol. 18, 309–345.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Jones, N.L. (2003). Detection of Shiga Toxin-Mediated Programmed Cell Death and Delineation of Death-Signaling Pathways. In: Philpott, D., Ebel, F. (eds) E. coli. Methods in Molecular Medicine™, vol 73. Humana Press. https://doi.org/10.1385/1-59259-316-X:229

Download citation

  • DOI: https://doi.org/10.1385/1-59259-316-X:229

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-939-1

  • Online ISBN: 978-1-59259-316-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics