E. coli pp 307-327 | Cite as

Gnotobiotic Piglets as an Animal Model for Oral Infection with O157 and Non-O157 Serotypes of STEC

  • Florian Gunzer
  • Isabel Hennig-Pauka
  • Karl-Heinz Waldmann
  • Michael Mengel
Protocol
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 73)

Abstract

Over the last few decades, the use of swine as an animal model for human diseases in biomedical research has been steadily increasing because of similarities between the two species. The gnotobiotechnique, on the other hand, has been developed further since the beginning of the 20th century (1, 2, 3), stimulated by the need for an experimental model to study bacteria-host interactions in sterile laboratory animals, during the course of an infection with a defined pathogen. The combination of both aspects led to the development of a complex isolator system that made the delivery of piglets by cesarean section and their rearing in a self-contained unit possible, shielded from undesirable contaminating germs (4,5). In such a microbiologically well-defined environment, pathogen-host interactions can be studied without the influence of accompanying bacterial flora.

Keywords

Burner Formalin Catheter Chrome Lactate 

References

  1. 1.
    Küster E. (1912) Die keimfreie Züchtung von Säugetieren und ihre Bedeutung für die Erforschung der Körperfunktionen. Zbl. Bakteriol. 54, 55.Google Scholar
  2. 2.
    Reyniers J. A. (1941) Apparatus for a method of maintaining and working with biological specimens in a germfree controlled environment. US Patent 2244082.Google Scholar
  3. 3.
    Trexler P. C. (1959) The use of plastics in the design of isolator systems. Ann. NY Acad. Sci. 78, 29.CrossRefPubMedGoogle Scholar
  4. 4.
    Plonait H., Bickhardt K., and Bähr K.-H. (1966) Versuche zur Gewinnung gnotobiotischer Ferkel mit dem Isolator Hannover I. Dtsch. Tierärztl. Wochenschr. 73, 539–543.PubMedGoogle Scholar
  5. 5.
    Bähr K.-H., Richter L., and Plonait H. (1968) Versuche zur Gewinnung spezifisch pathogen-freier Ferkel mit dem Isolator Hannover II. Dtsch. Tierärztl. Wochenschr. 75, 55–64.PubMedGoogle Scholar
  6. 6.
    Marques L.R.M., Peiris J.S.M., Cryz S.J., and O‘Brien A.D. (1987) Escheri-chia coli strains isolated from pigs with edema disease produce a variant of Shiga like toxin II. FEMS Microbiol. Lett. 44, 33–38.CrossRefGoogle Scholar
  7. 7.
    Gyles C. L. (1992) Escherichia coli cytotoxins and enterotoxins. Can. J. Microbiol. 38, 734–746.CrossRefPubMedGoogle Scholar
  8. 8.
    MacLeod D. L., Gyles C. L., and Wilcock B. P. (1991) Reproduction of edema disease of swine with purified Shiga like toxin II variant. Vet. Pathol. 28, 66–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Tzipori S., Wachsmuth K. I., Chapman C., Birner R., Brittingham J., Jackson C., et al. (1986) The pathogenesis of haemorrhagic colitis caused by Escherichia coli O157:H7 in gnotobiotic piglets. J. Infect. Dis. 154, 712–716.PubMedGoogle Scholar
  10. 10.
    Tzipori S., Wachsmuth K. I., Smithers J., and Jackson C. (1988) Studies in gnotobiotic piglets on non-0157:H7 Escherichia coli serotypes isolated from patients with hemorrhagic colitis. Gastroenterology 94, 590–597.PubMedGoogle Scholar
  11. 11.
    Tzipori S., Gunzer F., Donnenberg M. S., de Montigny L., Kaper J. B., and Donohue-Rolfe A. (1995) The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infect. Immun. 63, 3621–3627.PubMedGoogle Scholar
  12. 12.
    Donohue-Rolfe A., Kondova I., Oswald S., Hutto D., and Tzipori S. (2000) Escherichia coli O157:H7 strains that express Shiga toxin (Stx) 2 alone are more neurotropic for gnotobiotic piglets than are isotypes producing only Stx1 or both Stx1 and Stx2. J. Infect. Dis. 181, 1825–1829.CrossRefPubMedGoogle Scholar
  13. 13.
    Waldmann K. H. (1988) Gnotobiotische Gewinnung und Haltung von Ferkeln der Rasse Göttinger Miniaturschwein. Tierärztl. Prax. 3(Suppl.), 84–92.Google Scholar
  14. 14.
    Ley F. J. (1976) Radiation sterilization of diets. J. Inst. Anim. Tech. 26, 87.Google Scholar
  15. 15.
    Travnicek J. and Mandel L. (1979) Gnotobiotic techniques. Folia Microbiol. 24, 6–10.CrossRefGoogle Scholar
  16. 16.
    Waldmann K. H., Wendt M., and Bickhardt K. (1991) Kreatinin-Clearance als Grundlage klinischer Nierenfunktionsbestimmung beim Schwein. Tierärztl. Prax. 19, 373–380.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Florian Gunzer
    • 1
  • Isabel Hennig-Pauka
    • 2
  • Karl-Heinz Waldmann
    • 2
  • Michael Mengel
    • 3
  1. 1.Institut f&#00FC;r Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule HannoverHannoverGermany
  2. 2.Klinik f&#00FC;r kleine Klauentiere und forensische Medizin und Ambulatorische Klinik, Tier&#00E4rztliche Hochschule HannoverHannoverGermany
  3. 3.Institut f&#00FC;r Pathologie, Medizinische Hochschule HannoverHannoverGermany

Personalised recommendations