Skip to main content

Strategies to Adapt Adenoviral Vectors for Targeted Delivery

  • Protocol
Viral Vectors for Gene Therapy

Abstract

One of the challenges of current gene therapy vector development, concerns targeting a therapeutic gene to diseased cells with the aim of achieving sufficient gene expression in the affected tissue, while minimizing toxicity and expression in other tissues. The use of recombinant adenoviruses as vectors for gene therapy is restricted by the widespread distribution of the coxsackie and adenovirus receptor (CAR) (1,2), which allows infection of a range of tissues and precludes specific in vivo targeting. It is now well accepted that there is a dose-dependent toxicity associated with systemic delivery of adenoviral (Ad) vectors, in particular the risk of hepatotoxicity is a major concern (36). Thus, development of Ad vectors that can target specific tissues following systemic or minimally invasive administration would enhance their therapeutic potential and expand their application. Targeting can be achieved at the level of capsid binding or at later transduction events by the use of tissue-specific promoters (710). Targeting at the level of binding is preferred because even the interaction of cells with empty capsids leads to toxic effects (11), however a combination of both strategies has its obvious advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323.

    Article  PubMed  CAS  Google Scholar 

  2. Tomko, R. P. Xu, R., and Philipson, L. (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94, 3352–3356.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang, Y. Chirmule, N. Gao, G. P. Qian, R. Croyle, M. Joshi, B., et al. (2001) Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol. Ther. 3, 697–707.

    Article  PubMed  CAS  Google Scholar 

  4. Morral, N. O’Neal, W. K., Rice, K., Leland, M. M., Piedra, P. A., Aguilar-Cordova, E., et al. (2002) Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum. Gene Ther. 13, 143-154.

    Google Scholar 

  5. Higginbotham, J. N. Seth, P. Blaese, R. M., and Ramsey, W. J. (2002) The release of inflammatory cytokines from human peripheral blood mononuclear cells in vitro following exposure to adenovirus variants and capsid. Hum. Gene Ther. 13, 129–141.

    Article  PubMed  CAS  Google Scholar 

  6. Raper, S. E. Yudkoff, M. Chirmule, N. Gao, G. P. Nunes, F. Haskal, Z. J., et al. (2002) A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum. Gene Ther. 13, 163–175.

    Article  PubMed  CAS  Google Scholar 

  7. Connelly, S. Gardner, J. M. McClelland, A., and Kaleko, M. (1996) High-level tissue specific expression of functional human Factor VIII in mice. Hum. Gene Ther. 7, 183–195.

    Article  PubMed  CAS  Google Scholar 

  8. Pastore, L. Morral, N. Zhou, H. Garcia, R. Parks, R. J. Kochanek, S., et al. (1999) Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors. Hum. Gene Ther. 10, 1773–1781.

    Article  PubMed  CAS  Google Scholar 

  9. Bristol, J. A. Gallo-Penn, A. Andrews, J. Idamakanti, N. Kaleko, M., and Connelly, S. (2001) Adenovirus-mediated factor VIII gene expression results in attenuated anti-factor VIII-specific immunity in hemophilia A mice compared with factor VIII protein infusion. Hum. Gene Ther. 12, 1651–1661.

    Article  PubMed  CAS  Google Scholar 

  10. Hartigan-O’Connor, D. Kirk, C. J. Crawford, R. Mule, J. J., and Chamberlain, J. S. (2001) Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol. Ther. 4, 525–533.

    Article  PubMed  Google Scholar 

  11. Muruve, D. A. Barnes, M. J. Stillman, I. E., and Libermann, T. A. (1999) Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum. Gene Ther. 10, 965–976.

    Article  PubMed  CAS  Google Scholar 

  12. Roelvink, P. W. Lizonova, A. Lee, J. G. Li, Y. Bergelson, J. M. Finberg, R. W., et al. (1998) The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, andF. J. Virol. 72, 7909–7915.

    PubMed  CAS  Google Scholar 

  13. Ginsberg, H. S., ed. (1984) The Adenoviruses, Plenum, New York.

    Google Scholar 

  14. Wickham, T. J. Segal, D. M. Roelvink, P. W. Carrion, M. E. Lizonova, A. Lee, G. M., et al. (1996) Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J. Virol. 70, 6831–6838.

    PubMed  CAS  Google Scholar 

  15. Douglas, J. T. Rogers, B. E. Rosenfeld, M. E. Michael, S. I. Feng, M., and Curiel, D. T. (1996) Targeted gene delivery by tropism-modified adenoviral vectors. Nat. Biotechnol. 14, 1574–1578.

    Article  PubMed  CAS  Google Scholar 

  16. Wickham, T. J. Lee, G. M. Titus, J. A. Sconocchia, G. Bakacs, T. Kovesdi, I., et al. (1997) Targeted adenovirus-mediated gene delivery to T cells via CD3. J. Virol. 71, 7663–7669.

    PubMed  CAS  Google Scholar 

  17. Goldman, C. K. Rogers, B. E. Douglas, J. T., Sosnowski, B. A. Ying, W. Siegal, G. P., et al. (1997) Targeted gene delivery to Kaposi’s sarcoma cells via the fibroblast growth factor receptor. Cancer Res. 57, 1447–1451.

    PubMed  CAS  Google Scholar 

  18. Rogers, B. E. Douglas, J. T. Ahlem, C. Buchsbaum, D. J. Frincke, J., and Curiel, D. T. (1997) Use of a novel cross-linking method to modify adenovirus tropism. Gene Ther. 4, 1387–1392.

    Article  PubMed  CAS  Google Scholar 

  19. Rancourt, C. Rogers, B. E. Sosnowski, B. A. Wang, M. Piche, A. Pierce, G. F., et al. (1998) Basic fibroblast growth factor enhancement of adenovirus-mediated delivery of the herpes simplex virus thymidine kinase gene results in augmented therapeutic benefit in a murine model of ovarian cancer. Clin. Cancer Res. 4, 2455–2461.

    PubMed  CAS  Google Scholar 

  20. Gu, D. L. Gonzalez, A. M. Printz, M. A. Doukas, J. Ying, W. D’Andrea, M., et al. (1999) Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res. 59, 2608–2614.

    PubMed  CAS  Google Scholar 

  21. Blackwell, J. L., Miller, C. R., Douglas, J. T., Li, H., Reynolds, P. N., Carroll, W. R., et al. (1999) Retargeting to EGFR enhances adenovirus infection efficiency of squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 125, 856–863.

    PubMed  CAS  Google Scholar 

  22. Doukas, J., Hoganson, D. K., Ong, M., Ying, W., Lacey, D. L., Baird, A., et al. (1999) Retargeted delivery of adenoviral vectors through fibroblast growth factor receptors involves unique cellular pathways. FASEB J. 13, 1459–1466.

    PubMed  CAS  Google Scholar 

  23. Yoon, S. K., Mohr, L., O’Riordan, C. R., Lachapelle, A., Armentano, D., and Wands, J. R. (2000) Targeting a recombinant adenovirus vector to HCC cells using a bifunctional Fab-antibody conjugate. Biochem. Biophys. Res. Commun. 272, 497–504.

    Article  PubMed  CAS  Google Scholar 

  24. Trepel, M., Grifman, M., Weitzman, M. D., and Pasqualini, R. (2000) Molecular adaptors for vascular-targeted adenoviral gene delivery. Hum. Gene Ther. 11, 1971–1981.

    Article  PubMed  CAS  Google Scholar 

  25. Tillman, B. W., Hayes, T. L., DeGruijl, T. D., Douglas, J. T., and Curiel, D. T. (2000) Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res. 60, 5456–5463.

    PubMed  CAS  Google Scholar 

  26. Reynolds, P. N., Zinn, K. R., Gavrilyuk, V. D., Balyasnikova, I. V., Rogers, B. E., Buchsbaum, D. J., et al. (2000) A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol. Ther. 2, 562–578.

    Article  PubMed  CAS  Google Scholar 

  27. Ebbinghaus, C., Al-Jaibaji, A., Operschall, E., Schoffel, A., Peter, I., Greber, U. F., et al. (2001) Functional and selective targeting of adenovirus to high-affinity Fc gamma receptor I-positive cells by using a bispecific hybrid adapter. J. Virol. 75, 480–489.

    Article  PubMed  CAS  Google Scholar 

  28. Hoganson, D. K., Sosnowski, B. A., Pierce, G. F., and Doukas, J. (2001) Uptake of adenoviral vectors via fibroblast growth factor receptors involves intracellular pathways that differ from the targeting ligand. Mol. Ther. 3, 105–112.

    Article  PubMed  CAS  Google Scholar 

  29. Grill, J., Van Beusechem, V. W., Van Der Valk, P., Dirven, C. M., Leonhart, A., Pherai, D. S., et al. (2001) Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clin. Cancer Res. 7, 641–650.

    PubMed  CAS  Google Scholar 

  30. Nettelbeck, D. M., Miller, D. W., Jerome, V., Zuzarte, M., Watkins, S. J., Hawkins, R. E., et al. (2001) Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol. Ther. 3, 882–891.

    Article  PubMed  CAS  Google Scholar 

  31. Israel, B. F., Pickles, R. J., Segal, D. M., Gerard, R. D., and Kenney, S. C. (2001) Enhancement of adenovirus vector entry into CD70-positive B-cell lines by using a bispecific CD70-adenovirus fiber antibody. J. Virol. 75, 5215–5221.

    Article  PubMed  CAS  Google Scholar 

  32. Smith, J. S., Keller, J. R., Lohrey, N. C., McCauslin, C. S., Ortiz, M., Cowan, K., et al. (1999) Redirected infection of directly biotinylated recombinant adenovirus vectors through cell surface receptors and antigens. Proc. Natl. Acad. Sci USA 96, 8855–8860.

    Article  PubMed  CAS  Google Scholar 

  33. Romanczuk, H., Galer, C. E., Zabner, J., Barsomian, G., Wadsworth, S. C., and O’Riordan, C. R. (1999) Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice. Hum. Gene Ther. 10, 2615–2626.

    Article  PubMed  CAS  Google Scholar 

  34. Romanczuk, H., Galer, C. E., Zabner, J., Barsomian, G., Wadsworth, S. C., and O’Riordan, C. R. (1999) Dressing up adenoviruses to modify their tropism. Hum. Gene Ther. 10, 2575–2576.

    Article  PubMed  CAS  Google Scholar 

  35. Drapkin, P. T., O’Riordan, C. R., Yi, S. M., Chiorini, J. A., Cardella, J., Zabner, J., et al. (2000) Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia. J. Clin. Invest. 105, 589–596.

    Article  PubMed  CAS  Google Scholar 

  36. Fisher, K. D., Stallwood, Y., Green, N. K., Ulbrich, K., Mautner, V., and Seymour, L. W. (2001) Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther. 8, 341–348.

    Article  PubMed  CAS  Google Scholar 

  37. Wickham, T. J., Roelvink, P. W., Brough, D. E., and Kovesdi, I. (1996) Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat. Biotechnol. 14, 1570–1573.

    Article  PubMed  CAS  Google Scholar 

  38. Wickham, T. J., Tzeng, E., Shears, L. L., 2nd, Roelvink, P. W., Li, Y., Lee, G. M., et al. (1997) Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J. Virol. 71, 8221–8229.

    PubMed  CAS  Google Scholar 

  39. Hidaka, C., Milano, E., Leopold, P. L., Bergelson, J. M., Hackett, N. R., Finberg, R. W., et al. (1999) CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts. J. Clin. Invest. 103, 579–587.

    Article  PubMed  CAS  Google Scholar 

  40. Gonzalez, R., Vereecque, R., Wickham, T. J., Vanrumbeke, M., Kovesdi, I., Bauters, F., et al. (1999) Increased gene transfer in acute myeloid leukemic cells by an adenovirus vector containing a modified fiber protein. Gene Ther. 6, 314–320.

    Article  PubMed  CAS  Google Scholar 

  41. McDonald, G. A., Zhu, G., Li, Y., Kovesdi, I., Wickham, T. J., and Sukhatme, V. P. (1999) Efficient adenoviral gene transfer to kidney cortical vasculature utilizing a fiber modified vector. J. Gene Med. 1, 103–110.

    Article  PubMed  CAS  Google Scholar 

  42. Bouri, K., Feero, W. G., Myerburg, M. M., Wickham, T. J., Kovesdi, I., Hoffman, E. P., et al. (1999) Polylysine modification of adenoviral fiber protein enhances muscle cell transduction. Hum. Gene Ther. 10, 1633–1640.

    Article  PubMed  CAS  Google Scholar 

  43. Gonzalez, R., Vereecque, R., Wickham, T. J., Facon, T., Hetuin, D., Kovesdi, I., et al. (1999) Transduction of bone marrow cells by the AdZ.F(pK7) modified adenovirus demonstrates preferential gene transfer in myeloma cells. Hum. Gene Ther. 10, 2709–2717.

    Article  PubMed  CAS  Google Scholar 

  44. Staba, M. J., Wickham, T. J., Kovesdi, I., Hallahan, D, E. (2000) Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models. Cancer Gene Ther. 7, 13–19.

    Article  PubMed  CAS  Google Scholar 

  45. Li, L., Wickham, T. J., and Keegan, A. D. (2001) Efficient transduction of murine B lymphocytes and B lymphoma lines by modified adenoviral vectors: enhancement via targeting to FcR and heparan-containing proteins. Gene Ther. 8, 938–945.

    Article  PubMed  CAS  Google Scholar 

  46. Reynolds, P., Dmitriev, I., and Curiel, D. (1999) Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Ther. 6, 1336–1339.

    Article  PubMed  CAS  Google Scholar 

  47. Roelvink, P. W., Mi Lee, G., Einfeld, D. A., Kovesdi, I., and Wickham, T. J. (1999) Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286, 1568–1571.

    Article  PubMed  CAS  Google Scholar 

  48. Einfeld, D. A., Brough, D. E., Roelvink, P. W., Kovesdi, I., and Wickham, T. J. (1999) Construction of a pseudoreceptor that mediates transduction by adenoviruses expressing a ligand in fiber or penton base. J. Virol. 73, 9130–9136.

    PubMed  CAS  Google Scholar 

  49. Nicklin, S. A., Von Seggern, D. J., Work, L. M., Pek, D. C., Dominiczak, A. F., Nemerow, G. R., et al. (2001) Ablating adenovirus type 5 fiber-CAR binding and HI loop insertion of the SIGYPLP peptide generate an endothelial cell-selective adenovirus. Mol. Ther. 4, 534–542.

    Article  PubMed  CAS  Google Scholar 

  50. O’Riordan, C. R., Lachapelle, A., Delgado, C., Parkes, V., Wadsworth, S. C., Smith, A. E., et al. (1999) PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum. Gene Ther. 10, 1349–1358.

    Article  PubMed  Google Scholar 

  51. Croyle, M. A., Chirmule, N., Zhang, Y., and Wilson, J. M. (2001) “Stealth” adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J. Virol. 75, 4792–4801.

    Article  PubMed  CAS  Google Scholar 

  52. Croyle, M. A., Yu, Q. C., and Wilson, J. M. (2000) Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum. Gene Ther. 11, 1713–1722.

    Article  PubMed  CAS  Google Scholar 

  53. Abuchowski, A., McCoy, J. R., Palczuk, N. C., van Es, T., and Davis, F. F. (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586.

    PubMed  CAS  Google Scholar 

  54. Abuchowski, A., Kazo, G. M., Verhoest, C. R., Jr., Van Es, T., Kafkewitz, D., Nucci, M. L., et al. (1984) Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates. Cancer Biochem. Biophys. 7, 175–186.

    PubMed  CAS  Google Scholar 

  55. Richter, A. W. and Akerblom, E. (1983) Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins. Int. Arch. Allergy Appl. Immunol. 70, 124–131.

    Article  PubMed  CAS  Google Scholar 

  56. Delgado, C., Patel, J. N., Francis, G. E., and Fisher, D. (1990) Coupling of poly(ethylene glycol) to albumin under very mild conditions by activation with tresyl chloride: characterization of the conjugate by partitioning in aqueous twophase systems. Biotechnol. Appl. Biochem. 12, 119–128.

    PubMed  CAS  Google Scholar 

  57. Francis, G. E., Fisher, D., Delgado, C., Malik, F., Gardiner, A., and Neale, D. (1998) PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques. Int. J. Hematol. 68, 1–18.

    Article  PubMed  CAS  Google Scholar 

  58. Armentano, D., Zabner, J., Sacks, C., Sookdeo, C. C., Smith, M. P., St George, J. A., et al. (1997) Effect of the E4 region on the persistence of transgene expression from adenovirus vectors. J. Virol. 71, 2408–2416.

    PubMed  CAS  Google Scholar 

  59. Yu, D., Wolf, J. K., Scanlon, M., Price, J. E., and Hung, M. C. (1993) Enhanced c-erbB-2/neu expression in human ovarian cancer cells correlates with more severe malignancy that can be suppressed by E1A. Cancer Res. 53, 891–898.

    PubMed  CAS  Google Scholar 

  60. Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R. (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.

    Article  PubMed  CAS  Google Scholar 

  61. Graham, F. L. and van der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.

    Article  PubMed  CAS  Google Scholar 

  62. Maizel, J. V., Jr., White, D. O., and Scharff, M. D. (1968) The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36, 115–125.

    Article  PubMed  CAS  Google Scholar 

  63. Green, M., Pina, M., Kimes, R., Wensik, P., Machattie, L., and Thomas, Jr., C. (1967) Adenovirus DNA. I. Molecular weight and conformation. Proc. Natl. Acad. Sci. USA 57, 1302–1309.

    Article  PubMed  CAS  Google Scholar 

  64. van der Eb, A. J., van Kesteren, L. W., and van Bruggen, E. F. (1969) Structural properties of adenovirus DNA’s. Biochim. Biophys. Acta. 182, 530–541.

    PubMed  Google Scholar 

  65. Lappi, D. A., Matsunami, R., Martineau, D., and Baird, A. (1993) Reducing the heterogeneity of chemically conjugated targeted toxins: homogeneous basic FGF-saporin. Anal. Biochem. 212, 446–451.

    Article  PubMed  CAS  Google Scholar 

  66. Zhang, J. D., Cousens, L. S., Barr, P. J., and Sprang, S. R. (1991) Three-dimensional structure of human basic fibroblast growth factor, a structural homolog of interleukin 1 beta. Proc. Natl. Acad. Sci. USA 88, 3446–3450.

    Article  PubMed  CAS  Google Scholar 

  67. Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996) Real time quantitative PCR. Genome Res. 6, 986–994.

    Article  PubMed  CAS  Google Scholar 

  68. Prage, L., Pettersson, U., Hoglund, S., Lonberg-Holm, K., and Philipson, L. (1970) Structural proteins of adenoviruses. IV. Sequential degradation of the adenovirus type 2 virion. Virology 42, 341–358.

    Article  PubMed  CAS  Google Scholar 

  69. Huyghe, B. G., Liu, X., Sutjipto, S., Sugarman, B. J., Horn, M. T., Shepard, H. M., et al. (1995) Purification of a type 5 recombinant adenovirus encoding human p53 by column chromatography. Hum. Gene Ther. 6, 1403–1416.

    Article  PubMed  CAS  Google Scholar 

  70. O’Riordan, C. R., Lachapelle, A. L., Vincent, K. A., and Wadsworth, S. C. (2000) Scalable chromatographic purification process for recombinant adeno-associated virus (rAAV). J. Gene Med. 2, 444–454.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

O’Riordan, C.R., Song, A., Lanciotti, J. (2003). Strategies to Adapt Adenoviral Vectors for Targeted Delivery. In: Machida, C.A. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Medicine™, vol 76. Humana Press. https://doi.org/10.1385/1-59259-304-6:89

Download citation

  • DOI: https://doi.org/10.1385/1-59259-304-6:89

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-019-9

  • Online ISBN: 978-1-59259-304-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics