Skip to main content

Human Immunodeficiency Virus Type 1-Based Vectors for Gene Delivery to Human Hematopoietic Stem Cells

  • Protocol
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 76))

  • 836 Accesses

Abstract

A number of inherited and acquired disorders can potentially be treated by gene-based therapies. To be successful, gene therapy requires efficient delivery and continued expression of the therapeutic gene in the target cell. Toward this goal, a variety of methods have been developed for delivering genes into various cell types and tissues (for reviews, see refs. 1 and 2). Common viralbased methods utilize vectors derived from oncoretroviruses, adenovirus type 5, adenoassociated virus type 2, herpes simplex virus type 1 (HSV-1), and, most recently, lentiviruses. Among these, oncoretroviral vectors (primarily those based on Moloney murine leukemia virus) have been the most widely used to date in gene therapy applications, mainly because of their capacity to stably integrate into cellular DNA in the absence of wild-type virus (35). However, a major limitation of oncoretroviral vectors is their inability to transduce nondividing cells (69).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lollo, C. P., Banaszczyk, M. G., and Chiou, H. C. (2000) Obstacles and advances in non-viral gene delivery. Curr. Opin. Mol. Ther. 2, 136–142.

    PubMed  CAS  Google Scholar 

  2. Kay, M. A., Glorioso, C. J., and Naldini, L. (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33–40.

    Article  PubMed  CAS  Google Scholar 

  3. Miller, A. D. (1992) Retroviral vectors. Curr. Top. Microbiol. Immunol. 158,1–24.

    Article  PubMed  CAS  Google Scholar 

  4. Miller, A. D., Miller, D. G., Garcia, J. V., and Lynch, C. M. (1993) Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217,581–599.

    Article  PubMed  CAS  Google Scholar 

  5. Hawley, R. G. (1996) Therapeutic potential of retroviral vectors. Transfus. Sci. 17,7–14.

    Article  Google Scholar 

  6. Miller, D. G., Adam, M. A., and Miller, A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol. Cell. Biol. 10,4239–4242.

    PubMed  CAS  Google Scholar 

  7. Roe, T., Reynolds, T. C., Yu, G., and Brown, P. O. (1993) Integration of murine leukemia virus DNA depends on mitosis. EM BO J. 12, 2099–2108.

    CAS  Google Scholar 

  8. Lewis, P. F. and Emerman, M. (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68, 510–516.

    PubMed  CAS  Google Scholar 

  9. Lewis, P., Hensel, M., and Emerman, M. (1992) Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 11, 3053–3058.

    PubMed  CAS  Google Scholar 

  10. Poeschla, E., Gilbert, J., Li, X., Huang, S., Ho, A., and Wong-Staal, F. (1998) Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentiviral vectors. J. Virol. 72,6527–6536.

    PubMed  CAS  Google Scholar 

  11. Kim, S. S., Kothari, N., You, X. J., Robinson, W. E. Jr., Schnell, T., Uberla, K., et al. (2001) Generation of replication-defective helper-free vectors based on simian immunodeficiency virus. Virology 282,154–167.

    Article  PubMed  CAS  Google Scholar 

  12. Curran, M. A., Kaiser, S. M., Achacoso, P. L., and Nolan, G. P. (2000) Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol. Ther. 1, 31–38.

    Article  PubMed  CAS  Google Scholar 

  13. Mitrophanous, K., Yoon, S., Rohll, J., Patil, D., Wilkes, F., Kim, V., et al. (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther. 6,1808–1818.

    Article  PubMed  CAS  Google Scholar 

  14. Berkowitz, R. D., Ilves, H., Plavec, I., and Veres, G. (2001) Gene transfer systems derived from Visna virus: analysis of virus production and infectivity. Virology 279,116–129.

    Article  PubMed  CAS  Google Scholar 

  15. Frankel, A. D. and Young, J. A. (1998) HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem. 67,1–25.

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz, S., Felber, B. K., and Pavlakis, G. N. (1992) Distinct RNA sequences in the gag region of HIV-1 decrease RNA stability and inhibit expression in the absence of Rev protein. J. Virol. 66, 150–159.

    PubMed  CAS  Google Scholar 

  17. Rosen, C. A., Terwilliger, E., Dayton, A., Sodroski, J. G., and Haseltine, W. A. (1988) Intragenic cis-acting art gene-responsive sequences of the human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 85, 2071–2075.

    Article  PubMed  CAS  Google Scholar 

  18. Lever, A., Gottlinger, H., Haseltine, W., and Sodroski, J. (1989) Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J. Virol. 63,4085–4087.

    PubMed  CAS  Google Scholar 

  19. Richardson, J. H., Child, L. A., and Lever, A. M. (1993) Packaging of HIV-1 RNA requires cis-acting sequences outside the 5 leader region. J. Virol. 67, 3997–4005.

    PubMed  CAS  Google Scholar 

  20. Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A., and Axel, R. (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47, 333–348.

    Article  PubMed  CAS  Google Scholar 

  21. Dalgleish, A. G., Beverley, P. C. L., Clapham, P. R., Crawford, D. H., Greaves M. F., and Weiss, R. A. (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312,763–767.

    Article  PubMed  CAS  Google Scholar 

  22. Hill C. M., Deng, H., Unutmaz, D., Kewalramani, V. N., Bastiani, L., Gorny, M. K, et al. (1997) Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. J. Virol. 71,6296–6304.

    PubMed  CAS  Google Scholar 

  23. Bandres, J. C., Wang, Q. F., O’Leary, J., Baleaux, F., Amara, A., Hoxie, J. A., et al. (1998) Human immunodeficiency virus (HIV) envelope binds to CXCR4 independently of CD4 and binding can be enhanced by interaction with soluble CD4 or by HIV-1 envelope deglycosylation. J. Virol. 72, 2500–2504.

    PubMed  CAS  Google Scholar 

  24. Alkhatib, G., Combardiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., et al. (1996) CC CKR5: A RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958.

    Article  PubMed  CAS  Google Scholar 

  25. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., et al. (1996) The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85,1135–1148.

    Article  PubMed  CAS  Google Scholar 

  26. Feng, Y., Broder, C. C., Kennedy, P. E., and Berger, E. A. (1996) HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.

    Article  PubMed  CAS  Google Scholar 

  27. Goff, S. P. (1990) Retroviral RT: synthesis, structure and function. J. Acquir. Immune Defic. Syndr. 3, 817–831.

    PubMed  CAS  Google Scholar 

  28. Farnet, C. M. and Haseltine, W. A. (1991) Determination of viral proteins present in HIV-1 pre-integration complex. J. Virol. 65,1910–1915.

    PubMed  CAS  Google Scholar 

  29. Bukrinsky, M. I., Sharova, N., McDonald, T. L., Pushkarskaya, T., Tarpley, W. G., and Stevenson, M. (1993) Association of IN, MA and RT antigens of HIV-1 with viral nucleic acids following acute infection. Proc. Natl. Acad. Sci. USA 90,6125–6129.

    Article  PubMed  CAS  Google Scholar 

  30. Bukrinsky, M. I., Haggerty, S., Dempsey, M. P., Sharova, N., Adzhubel, A., et al. (1993) A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365,666–669.

    Article  PubMed  CAS  Google Scholar 

  31. Gallay, P., Chin, D., Hope, T. J., and Trono, D. (1997) HIV-1 infection of nondividing cells mediated through the recognition of integrase by the import/karyopherin pathway. Proc. Natl. Acad. Sci. USA 94, 9825–9830.

    Article  PubMed  CAS  Google Scholar 

  32. Heinzinger, N. K., Bukrinsky, M. I., Haggerty, S. A., Ragland, A. M., Kewalramani, V., Lee, M. A., et al. (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc. Natl. Acad. Sci. USA 91,7311–7315.

    Article  PubMed  CAS  Google Scholar 

  33. Trono, D. (1995) HIV-1 accessory proteins: Leading roles for the supporting cast. Cell 82,189–192.

    Article  PubMed  CAS  Google Scholar 

  34. LaFemina, R. L., Callahan, P. L., and Cordingley, M. G. (1990) Substrate specificity of recombinant HIV-1 IN protein. J. Virol. 65,5624–5630.

    Google Scholar 

  35. Bushman, F. D. and Craigie, R. (1991) Activities of HIV-1 integration protein in vitro: specific cleavage and integration of HIV-1 DNA. Proc. Natl. Acad. Sci. USA 88,1339–1343.

    Article  PubMed  CAS  Google Scholar 

  36. Cullen, B. R. (1991) Regulation of HIV-1 gene expression. FASEB J. 5, 2361–2368.

    PubMed  CAS  Google Scholar 

  37. Valsamakis, A., Zeichner, S., Carswell, S., and Alwine, J. C. (1991) The HIV-1 polyadenylation signal: a 3 long terminal repeat element upstream of the AAUAAA necessary for efficient polyadenylation. Proc. Natl. Acad. Sci. USA 88,2108–2112.

    Article  PubMed  CAS  Google Scholar 

  38. Feng, S. and Holland, E. C. (1988) HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334,165–167.

    Article  PubMed  CAS  Google Scholar 

  39. Keen, N. J., Gait, M. J., and Karn, J. (1996) Human immunodeficiency virus type-1 Tat is an integral component of the activated transcription-elongation complex. Proc. Natl. Acad. Sci. USA 93,2505–2510.

    Article  PubMed  CAS  Google Scholar 

  40. Daly, T. J., Cook, K. S., Gray, G. S., Maione, T. E., and Rusche, J. R. (1989) Specific binding of HIV-1 recombinant Rev protein to the Rev-response element in vitro. Nature 342, 816–819.

    Article  PubMed  CAS  Google Scholar 

  41. Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W., and Lührman, R. (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82,475–483.

    Article  PubMed  CAS  Google Scholar 

  42. Wen, W., Meinkoth, J. L., Tsien, R. Y., and Taylor, S. S. (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82,463–473.

    Article  PubMed  CAS  Google Scholar 

  43. Ullman, K. S., Powers, M. A., and Forbes, D. J. (1997) Nuclear export receptors: From importin to exportin. Cell 90,967–970.

    Article  PubMed  CAS  Google Scholar 

  44. Robey, W. G., Safai, B., Oroszlan, S., Arthur, L. O., Gonda, M. A., Gallo, R. C., et al. (1985) Characterization of Env and core structural gene products of HTLV-III with sera from AIDS patients. Science 228,593–595.

    Article  PubMed  CAS  Google Scholar 

  45. Stein, B. S. and Engleman, E. G. (1990) Intracellular processing of the gp160 HIV-1 Env precursor: endoproteolytic cleavage occurs in a cis or medial compartment of the Golgi complex. J. Biol. Chem. 265, 2640–2649.

    PubMed  CAS  Google Scholar 

  46. Freed, E. O., Myers, D. J., and Risser, R. J. (1989) Mutational analysis of the cleavage sequence of the HIV-1 Env glycoprotein precursor gp160. J. Virol. 63, 4670–4675.

    PubMed  CAS  Google Scholar 

  47. Bryant, M. and Ranter, L. (1990) Myristylation dependent replication and assembly of HIV-1. Proc. Natl. Acad. Sci. USA 87,523–527.

    Article  PubMed  CAS  Google Scholar 

  48. Peng, C., Ho, B. K., Chang, T. W., and Chang, N. T. (1989) Role of HIV-1 specific PR in core protein maturation and viral infectivity. J. Virol. 63, 2550–2556.

    PubMed  CAS  Google Scholar 

  49. Sheng, N. and Erickson-Viitanen, S. (1984) Cleavage of p15 protein in vitro by HIV-1 PR is RNA dependent. J. Virol. 68,6207–6214.

    Google Scholar 

  50. Debouck, C. (1991) Substrate specificity of the human (type 1) and simian immunodeficiency virus proteases. Adv. Exp. Med. Biol. 306, 407–415.

    PubMed  CAS  Google Scholar 

  51. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  52. Kavanaugh, M. P., Miller, D. G., Zhang, W., Law, W., Kozak, S. L., Kabat, D., et al. (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retro virus are inducible sodium-dependent phosphate symporters. Proc. Natl. Acad. Sci. USA 91, 7071–7075.

    Article  PubMed  CAS  Google Scholar 

  53. Schlegel, R., Tralka, T. S., Willingham, M. C., and Pastan, I. (1983) Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV-binding site? Cell 32 639–646.

    Article  PubMed  CAS  Google Scholar 

  54. Mastromarino, P., Conti, C., Goldoni, P., Hauttecoeur, B. and Orsi, N. (1987) Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J. Gen. Virol. 68, 2359–2369.

    Article  PubMed  CAS  Google Scholar 

  55. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors. Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    Article  PubMed  CAS  Google Scholar 

  56. Page, K. A., Landau, N. R., and Littman, D. R. (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64,5270–5276.

    PubMed  CAS  Google Scholar 

  57. Landau, N. R., Page, K. A., and Littman, D. R. (1991) Pseudotyping with human T-cell leukemia virus type 1 broadens the human immunodeficiency virus host range. J. Virol. 65, 162–169.

    PubMed  CAS  Google Scholar 

  58. Poznansky, M., Lever, A., Begeron, L., Haseltine, W., and Sodroski, J. (1991) Gene transfer into human lymphocytes by a defective human immunodeficiency virus type I vector. J. Virol. 65, 532–536.

    PubMed  CAS  Google Scholar 

  59. Buchschacher, G. L. and Panganiban A.T. (1992) Human immunodeficiency virus vectors for inducible expression of foreign genes. J. Virol. 66, 2731–2739.

    PubMed  CAS  Google Scholar 

  60. Parolin, C., Dorfman, T., Palu, G., Gottlinger, H., and Sodroski, J0. (1994) Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J. Virol. 68, 3888–3895.

    PubMed  CAS  Google Scholar 

  61. DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P. M., Miller, J. H., and Calos, M. P. (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell. Biol. 7, 379–387.

    PubMed  CAS  Google Scholar 

  62. Sun, Y., Pinchuck, L. M., Agy, M. B., and Clark E. A. (1997) Nuclear import of HIV-1 DNA in resting CD4+T cells requires a cyclosporin A-sensitive pathway. J. Immunol. 158,512–517.

    PubMed  CAS  Google Scholar 

  63. Korin, Y. D. and Zack, J. A. (1998) Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J. Virol. 72, 3161–3168.

    PubMed  CAS  Google Scholar 

  64. Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15,871–875.

    Article  PubMed  CAS  Google Scholar 

  65. Kafri, T., Bloer, U., Peterson, D. A., Gage, F. H., and Verma, I. M. (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 17,314–317.

    Article  PubMed  CAS  Google Scholar 

  66. Gasmi, M., Glynn, J., Jin, M. J., Jolly, D. J., Yee, J. K., and Chen, S. T. (1999) Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J. Virol. 73,1828–1834.

    PubMed  CAS  Google Scholar 

  67. Chinnasamy, D., Chinnasamy, N., Enriquez, M. J., Otsu, M., Morgan, R. A., and Candotti, F. (2000) Lentiviral-mediated gene transfer into human lymphocytes: role of HIV-1 accessory proteins. Blood 96,1309–1316.

    PubMed  CAS  Google Scholar 

  68. Kim, V. N., Mitrophanous, K., Kingsman, S. M., and Kingsman, A. J. (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J. Virol. 72, 811–816.

    PubMed  CAS  Google Scholar 

  69. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., et al. (1998) A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72,8463–8471.

    PubMed  CAS  Google Scholar 

  70. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H., and Verma, I. M. (1998) Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157.

    PubMed  CAS  Google Scholar 

  71. Zufferey, R., Dull, T., Mandel, R. J., Bukovsky, A., Quiroz, D., Naldini, L., et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72,9873–9880.

    PubMed  CAS  Google Scholar 

  72. Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., and Charneau, P. (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101,173–185.

    Article  PubMed  CAS  Google Scholar 

  73. Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M., and Naldini, L. (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genet. 25,217–222.

    Article  PubMed  CAS  Google Scholar 

  74. Bray, M., Prasad, S., Dubay, J. W., Hunter, E., Jeang, K. T., Rekosh, D., et al. (1994) A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc. Natl. Acad. Sci. USA 91, 1256–1260.

    Article  PubMed  CAS  Google Scholar 

  75. Ernst, R. K., Bray, M., Rekosh, D., and Hammarskjold, M.-L. (1997) A structured retroviral RNA element that mediates nucleocytoplasmic export of introncontaining RNA. Mol. Cell. Biol. 17,135–144.

    PubMed  CAS  Google Scholar 

  76. Mautino, M. R., Keiser, N., and Morgan, R. A. (2000) Improved titers of HIV based lentiviral vectors using the SRV-1 constitutive transport element. Gene Ther. 7, 1421–1424.

    Article  PubMed  CAS  Google Scholar 

  77. Zufferey, R., Donello, J. E., Trono, D., and Hope, T. J. (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73,2886–2892.

    PubMed  CAS  Google Scholar 

  78. Ramezani, A., Hawley, T. S., and Hawley, R. G. (2000) Lentiviral vectors for enhanced gene expression in human hematopoietic cells. Mol. Ther. 2,458–469.

    Article  PubMed  CAS  Google Scholar 

  79. Dunbar, C. E. and Emmons, R. V. B. (1994) Gene transfer into hematopoietic progenitor and stem cells: progress and problems. Stem Cells 12, 563–576.

    Article  PubMed  CAS  Google Scholar 

  80. Stewart, A. K., Dubé, I. D., and Hawley, R. G. (1999) Gene marking and the biology of hematopoietic cell transfer in human clinical trials, in Blood Cell Biochemistry, Vol. 8: Hematopoiesis and Gene Therapy (Fairbairn, L. J. and Testa, N., eds.), Kluwer Academic/Plenum, New York, pp. 243–268.

    Google Scholar 

  81. Sorrentino, B. P. and Nienhuis, A. W. (1999) The hematopoietic system as a target for gene therapy, in The Development of Human Gene Therapy (Friedmann, T., ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 351–426.

    Google Scholar 

  82. Engel, B. C. and Kohn, D. B. (1999) Stem cell directed gene therapy. Frontiers Biosci. 4, e26–e33.

    Article  CAS  Google Scholar 

  83. Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., Gross, F., Yvon, E., Nusbaum, P., et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672.

    Article  PubMed  CAS  Google Scholar 

  84. Cheshier, S. H., Morrison, S. J., Liao, X., and Weissman, I. L. (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 96, 3120–3125.

    Article  PubMed  CAS  Google Scholar 

  85. Gothot, A., van der Loo, J. C. M., Clapp, D. W., and Srour, E. F. (1998) Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34+cells in non-obese diabetic/severe combined immune-deficient mice. Blood 92, 2641–2649.

    PubMed  CAS  Google Scholar 

  86. Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q.-X., Planelles, V., and Chen, I. S. Y. (1996) High-efficiency gene transfer into CD34+cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70,2581–2585.

    PubMed  CAS  Google Scholar 

  87. Reiser, J., Harmison, G., Kluepfel-Stahl, S., Brady, R. O., Karlsson, S., and Schubert, M. (1996) Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc. Natl. Acad. Sci. USA 93,15,266–15,271.

    Article  PubMed  CAS  Google Scholar 

  88. Uchida, N., Sutton, R. E., Friera, A. M., He, D., Reitsman, M. J., Chang, W. C., et al. (1998) HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 95,11,939–11,944.

    Article  PubMed  CAS  Google Scholar 

  89. Case, S. S., Price, M. A., Jordan, C. T., Yu, X. J., Wang, L., Bauer, G., et al. (1999) Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl. Acad. Sci. USA 96, 2988–2993.

    Article  PubMed  CAS  Google Scholar 

  90. Sutton, R. E., Reitsma, M. J., Uchida, N., and Brown, R O. (1999) Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J. Virol. 73, 3649–3660.

    PubMed  CAS  Google Scholar 

  91. Salmon, P., Kindler, V., Ducrey, O., Chapuis, B., Zubler, R. H., and Trono, D. (2000) High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages after transduction with improved lentiviral vectors. Blood 96, 3392–3398.

    PubMed  CAS  Google Scholar 

  92. Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M., and Torbett, B. E. (1999) Transduction of human CD34+cells that mediate long-term engraftment of NOD/SCID mice by HIV-1 vectors. Science 283, 682–686.

    Article  PubMed  CAS  Google Scholar 

  93. Guenechea, G., Gan, O.I., Inamitsu, T., Dorrell, C., Pereira, D. S., Kelly, M., et al. (2000) Transduction of human CD34+CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol. Ther. 1, 566–573.

    Article  PubMed  CAS  Google Scholar 

  94. Woods, N.-B., Fahlman, C., Mikkola, H., Hamaguchi, I., Olsson, K., Zufferey, R., et al. (2000) Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells. Blood 96, 3725–3733.

    PubMed  CAS  Google Scholar 

  95. Gao, Z., Golob, J., Tanavde, V. M., Civin, C. I., Hawley, R. G., and Cheng, L. (2001) High levels of transgene expression following transduction of long-term NOD/SCID-repopulating human cells with a modified lentiviral vector. Stem Cells 19,247–259.

    Article  PubMed  CAS  Google Scholar 

  96. Sirven, A., Ravet, E., Charneau, P., Zennou, V., Coulombel, L., Guétard, D., et al. (2001) Enhanced transgene expression in cord blood CD34+-derived hematopoietic cells, including developing T cells and NOD/SCID mouse repopulating cells, following transduction with modified TRIP lentiviral vectors. Mol. Ther. 3,438–448.

    Article  PubMed  CAS  Google Scholar 

  97. Woods, N.-B., Mikkola, H., Nilsson, E., Olsson, K., Trono, D., and Karlsson, S. (2001) Lentiviral-mediated gene transfer into hematopoietic stem cells. J. Intern. Med. 249, 339–343.

    Article  PubMed  CAS  Google Scholar 

  98. Boshart, M., Weber, F., Jahn, G., Dorsch-Hasler, K., Fleckenstein, B., and Schaffner, W. (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521–530.

    Article  PubMed  CAS  Google Scholar 

  99. Baskar, J. F., Smith, P. P., Nilaver, G., Jupp, R. A., Hoffmann, S., Peffer, N. J., et al. (1996) The enhancer domain of the human major immediate-early promoter determines cell type-specific expression in transgenic mice. J. Virol. 70, 3207–3214.

    PubMed  CAS  Google Scholar 

  100. An, D. S., Wersto, R. P., Agricola, B. A., Metzger, M. E., Lu, S., Amado, R. G., et al. (2000) Marking and gene expression by a lentivirus vector in transplanted human and nonhuman primate CD34+cells. J. Virol. 74, 1286–1295.

    Article  PubMed  CAS  Google Scholar 

  101. Scharfmann, R., Axelrod, J. H., and Verma, I. M. (1991) Long-term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc. Natl. Acad. Sci. USA 88, 4626–4630.

    Article  PubMed  CAS  Google Scholar 

  102. Kay, M. A., Baley, P., Rothenberg, S., Leland, F., Fleming, L., Ponder, K. P., et al. (1992) Expression of human α1-antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes. Proc. Natl. Acad. Sci. USA 89, 89–93.

    Article  PubMed  CAS  Google Scholar 

  103. Hawley, R. G., Lieu, F. H. L., Fong, A. Z. C., and Hawley, T. S. (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136–138.

    PubMed  CAS  Google Scholar 

  104. Eglitis, M. A., Schneiderman, R. D., Rice, P. M., and Eiden, M. V. (1995) Evaluation of retroviral vectors based on the gibbon ape leukemia virus. Gene Ther. 2, 486–492.

    PubMed  CAS  Google Scholar 

  105. Kim, D. W., Uetsuki, T., Kaziro, Y., Yamaguchi, N., and Sugano, S. (1990) Use of the human elongation factor 1α promoter as a versatile and efficient expression system. Gene 91, 217–223.

    Article  PubMed  CAS  Google Scholar 

  106. Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Efficient selection for highexpression transfectants with a novel eukaryotic vector. Gene 108, 193–199.

    Article  PubMed  CAS  Google Scholar 

  107. Lim, B., Apperley, J. F., Orkin, S. H., and Williams, D. A. (1989) Long-term expression of human adenosine deaminase in mice transplanted with retrovirusinfected hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 86, 8892–8896.

    Article  PubMed  CAS  Google Scholar 

  108. Rivella, S. and Sadelain, M. (1998) Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing. Semin. Hematol. 35, 112–125.

    PubMed  CAS  Google Scholar 

  109. Emery, D. W. and Stamatoyannopoulos, G. (1999) Stem cell gene therapy for the β-chain hemoglobinopathies. Problems and progress. Ann. N.Y. Acad. Sci. 872, 94–107.

    Article  PubMed  CAS  Google Scholar 

  110. Gasser, S. M. (2001) Positions of potential: nuclear organization and gene expression. Cell 104, 639–642.

    Article  PubMed  CAS  Google Scholar 

  111. Hawley, R. G. (2001) Progress toward vector design for hematopoietic stem cell gene therapy. Curr. Gene Ther. 1,1–17.

    Article  PubMed  CAS  Google Scholar 

  112. Hawley, T. S., Sabourin, L. A., and Hawley, R. G. (1989) Comparative analysis of retroviral vector expression in mouse embryonal carcinoma cells. Plasmid 22, 120–131.

    Article  PubMed  CAS  Google Scholar 

  113. Rasheed, S., Nelson-Rees, W.A., Toth, E. M., Arnestein, P., and Gardner, M. B. (1974) Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer 33,1027–1033.

    Article  PubMed  CAS  Google Scholar 

  114. Moritz, T., Patel, V. P., and Williams, D. A. (1994) Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J. Clin. Invest. 93, 1451–1457.

    Article  PubMed  CAS  Google Scholar 

  115. Donahue, R. E., Sorrentino, B. P., Hawley, R. G., An, D. S., Chen, I. S. Y., and Wersto, R. P. (2001) Fibronectin fragment CH-296 inhibits apoptosis and enhances ex vivo gene transfer by murine retrovirus and human lentivirus vectors independent of viral tropism in non-human primate CD34+cells. Mol. Ther. 3, 359–367.

    Article  PubMed  CAS  Google Scholar 

  116. Bahnson, A. B., Dunigan, J. T., Baysal, B. E., Mohney, T., Atchison, R. W., Nimgaonkar, M. T., et al. (1995) Centrifugal enhancement of retroviral mediated gene transfer. J. Virol. Meth. 54, 131–143.

    Article  CAS  Google Scholar 

  117. Gervaix, A., West, D., Leoni, L. M., Richman, D. D., Wong-Staal, F., and Corbeil, J. (1997) A new reporter cell line to monitor HIV-1 infection and drug susceptibility in vitro. Proc. Natl. Acad. Sci. USA 94, 4653–4658.

    Article  PubMed  CAS  Google Scholar 

  118. Higashikawa, F. and Chang, L.-J. (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280, 124–131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Ramezani, A., Hawley, R.G. (2003). Human Immunodeficiency Virus Type 1-Based Vectors for Gene Delivery to Human Hematopoietic Stem Cells. In: Machida, C.A. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Medicine™, vol 76. Humana Press. https://doi.org/10.1385/1-59259-304-6:467

Download citation

  • DOI: https://doi.org/10.1385/1-59259-304-6:467

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-019-9

  • Online ISBN: 978-1-59259-304-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics