Skip to main content

A Multigene Lentiviral Vector System Based on Differential Splicing

  • Protocol
  • 860 Accesses

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 76))

Abstract

Lentiviral vectors are promising tools for gene transfer (14). Like oncoret-roviral vectors, they offer the unique advantage of stably integrating into the genome of the host cell, thus providing the basis for sustained gene expression. In contrast to the classical oncoretrovirus derived vectors, lentiviral vectors are highly efficient at infection of nondividing cells because of the presence of nuclear localization signals on several virion associated proteins, which include matrix (MA), viral protein R (VPR), and integrase (IN) in the case of human immunodeficiency virus type-one (HIV-1) (5).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Klimatcheva, E., Rosenblatt, J. D., and Planelles, V. (1999) Lentiviral vectors and gene therapy. Front. Biosci. 4, D481–S496.

    Article  PubMed  CAS  Google Scholar 

  2. Stripecke, R., Cardoso, A. A., Pepper, K. A., et al. (2000) Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage-colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses. Blood 96,1317–1326.

    PubMed  CAS  Google Scholar 

  3. Trono, D. (2000) Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther. 7, 20–23.

    Article  PubMed  CAS  Google Scholar 

  4. Vigna, E. and Naldini, L. (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J. Gene Med. 2, 308–316.

    Article  PubMed  CAS  Google Scholar 

  5. Bukrinsky, M. I. and Haffar, O. K. (1999) HIV-1 nuclear import: in search of a leader. Front. Biosci. 4, D772–D781.

    Article  PubMed  CAS  Google Scholar 

  6. Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q. X., Planelles, V., et al. (1996) High-efficiency gene transfer into CD34+cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581–2585.

    PubMed  CAS  Google Scholar 

  7. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    Article  PubMed  CAS  Google Scholar 

  8. Yee, J. K., Friedmann, T., and Burns, J. C. (1994) Generation of high-titer pseudotyped retroviral vectors with very broad host range. Meth. Cell Biol. 43 Pt A, 99–112.

    Article  CAS  Google Scholar 

  9. Landau, N. R., Page, K. A., and Littman, D. R. (1991) Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J. Virol. 65, 162–169.

    PubMed  CAS  Google Scholar 

  10. Page, K. A., Landau, N. R., and Littman, D. R. (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J. Virol. 64, 5270–5276.

    PubMed  CAS  Google Scholar 

  11. Kobinger, G. P., Weiner, D. J., Yu, Q. C., and Wilson, J. M. (2001) Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat. Biotechnol. 19, 225–230.

    Article  PubMed  CAS  Google Scholar 

  12. Reiser, J. (2000) Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther. 7, 910–913.

    Article  PubMed  CAS  Google Scholar 

  13. Gatignol, A. and Jeang, K. T. (2000) Tat as a transcriptional activator and a potential therapeutic target for HIV-1. Adv. Pharmacol. 48, 209–227.

    Article  PubMed  CAS  Google Scholar 

  14. Taube, R., Fujinaga, K., Wimmer, J., Barboric, M., and Peterlin, B. M. (1999) Tat transactivation: a model for the regulation of eukaryotic transcriptional elongation. Virology 264, 245–253.

    Article  PubMed  CAS  Google Scholar 

  15. Watson, K. and Edwards, R. J. (1999) HIV-1-trans-activating (Tat) protein: both a target and a tool in therapeutic approaches. Biochem. Pharmacol. 58,1521–1528.

    Article  PubMed  CAS  Google Scholar 

  16. Kjems, J. and Askjaer, P. (2000) Rev protein and its cellular partners. Adv. Pharmacol. 48, 251–298.

    Article  PubMed  CAS  Google Scholar 

  17. Hope, T. J. (1999) The ins and outs of HIV Rev. Arch. Biochem. Biophys. 365, 186–191.

    Article  PubMed  CAS  Google Scholar 

  18. Cullen, B. R. and Greene, W. C. (1989) Regulatory pathways governing HIV-1 replication. Cell 58,423–426.

    Article  PubMed  CAS  Google Scholar 

  19. Cullen, B. R. (1998) HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93, 685–692.

    Article  PubMed  CAS  Google Scholar 

  20. Neumann, M., Harrison, J., Saltarelli, M., et al. (1994) Splicing variability in HIV type 1 revealed by quantitative RNA polymerase chain reaction. AIDS Res. Hum. Retroviruses 10,1531–1542.

    Article  PubMed  CAS  Google Scholar 

  21. Pavlakis, G. N., Schwartz, S., D’Agostino, D., and Felber, B. (1992) Structure, splicing, and regulation of expression of HIV-1: a model for the general organization of lentiviruses and other complex retroviruses, in AIDS Research Reviews (Koff, W. C., Kennedy, R. C., and Wong-Staal, F., eds.), Marcel Dekker, New York, pp. 41–63.

    Google Scholar 

  22. Fischer, U., Meyer, S., Teufel, M., Heckel, C., Luhrmann, R., and Rautmann, G. (1994) Evidence that HIV-1 Rev directly promotes the nuclear export of unspliced RNA. EMBO J. 13,4105–4112.

    PubMed  CAS  Google Scholar 

  23. Cullen, B. R. (1998) Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 249, 203–210.

    Article  PubMed  CAS  Google Scholar 

  24. Fukumori, T., Kagawa, S., Iida, S., et al. (1999) Rev-dependent expression of three species of HIV-1 mRNAs (review). Int. J. Mol. Med. 3, 297–302.

    PubMed  CAS  Google Scholar 

  25. Reddy, T. R., Xu, W., Mau, J. K., et al. (1999) Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nat. Med. 5, 635–642.

    Article  PubMed  CAS  Google Scholar 

  26. Nakajima, T., Nakamaru, K., Ido, E., Terao, K., Hayami, M., and Hasegawa, M. (2000) Development of novel simian immunodeficiency virus vectors carrying a dual gene expression system. Hum. Gene Ther. 11,1863–1874.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu, Y., Gelbard, H. A., Roshal, M., Pursell, S., Jamieson, B. D., and Planelles, V. (2001) Comparison of cell cycle arrest, transactivation, and apoptosis induced by the simian immunodeficiency virus SIVagm and human immunodeficiency virus type 1 vpr genes. J. Virol. 75, 3791–3801.

    Article  PubMed  CAS  Google Scholar 

  28. Zhu, Y., Feuer, G., Day, S. L., Wrzesinski, S., and Planelles, V. (2001) Multigene lentivirus vectors based on differential splicing and translational control. Mol. Ther. 4, 375–382.

    Article  PubMed  CAS  Google Scholar 

  29. Ross, T. M. (2001) Using death to one’s advantage: HIV modulation of apoptosis. Leukemia 15,332–341.

    Article  PubMed  CAS  Google Scholar 

  30. Krzyzowska, M., Schollenberger, A., and Niemialtowski, M. G. (2000) How human immunodeficiency viruses and herpesviruses affect apoptosis. Acta. Virol. 44, 203–210.

    PubMed  CAS  Google Scholar 

  31. Roshal, M., Zhu, Y., and Planelles, V. (2001) Apoptosis in AIDS. Apoptosis 6, 103–116.

    Article  PubMed  CAS  Google Scholar 

  32. Gibellini, D., Re, M. C., Ponti, C., et al. (2001) HIV-1 Tat protects CD4+Jurkat T lymphoblastoid cells from apoptosis mediated by TNF-related apoptosis-inducing ligand. Cell Immunol. 207, 89–99.

    Article  PubMed  CAS  Google Scholar 

  33. An, D. S., Morizono, K., Li, Q. X., Mao, S. H., Lu, S., and Chen, I. S. (1999) An inducible human immunodeficiency virus type 1 (HIV-1) vector which effectively suppresses HIV-1 replication. J. Virol. 73, 7671–7677.

    PubMed  CAS  Google Scholar 

  34. White, S. M., Renda, M., Nam, N. Y., et al. (1999) Lentivirus vectors using human and simian immunodeficiency virus elements. J. Virol. 73, 2832–2840.

    PubMed  CAS  Google Scholar 

  35. Naldini, L., Blomer, U., Gallay, P., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  36. Planelles, V., Haislip, A., Withers-Ward, E. S., et al. (1995) A new reporter system for detection of retroviral infection. Gene Ther. 2, 369–376.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Zhu, Y., Planelles, V. (2003). A Multigene Lentiviral Vector System Based on Differential Splicing. In: Machida, C.A. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Medicine™, vol 76. Humana Press. https://doi.org/10.1385/1-59259-304-6:433

Download citation

  • DOI: https://doi.org/10.1385/1-59259-304-6:433

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-019-9

  • Online ISBN: 978-1-59259-304-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics