Generation of Retroviral Packaging and Producer Cell Lines for Large-Scale Vector Production with Improved Safety and Titer

  • Thomas W. DubenskyJr.
  • Sybille L. Sauter
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 76)


Retroviral vectors based on Moloney Murine Leukemia Virus (MLV), described more than 15 years ago (1), first entered clinical trials in 1990 (2). Since then, a greater understanding of the basic retrovirus biology and how it relates to the production of recombinant retroviral vectors has helped overcome some of the initial hurdles, including low titer, outbreak of replication-competent retrovirus (RCR), and complement inactivation of vector (3, 4, 5, 6). Subsequently, retroviral vectors have become a very safe and powerful tool for efficient in vitro, ex vivo, and in vivo gene transfer for proliferating cells. Several refinements in recombinant MLV vector technology were necessary, particularly for clinical trials using systemic administration of very high vector doses (>1010 transducing units), thus necessitating efficient large-scale manufacture of safe and high-titer retroviral vector preparations.


Murine Leukemia Virus Viral Supernatant Packaging Cell Line Producer Clone Vector Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mann, R., Mulligan, R. C., and Baltimore, D. (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159.PubMedCrossRefGoogle Scholar
  2. 2.
    Blaese, R. M., Culver, K. W., Miller, A. D., Carter, C. S., Fleisher, T., Clerici, M., et al. (1995) T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270, 475–480.PubMedCrossRefGoogle Scholar
  3. 3.
    Markowitz, D., Goff, S., and Bank, A. (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167, 400–406.PubMedGoogle Scholar
  4. 4.
    Miller, A. D. (1990) Retrovirus packaging cells. Hum. Gene Ther. 1, 5–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Cosset, F. L., Takeuchi, Y., Battini, J. L., Weiss, R. A., and Collins, M. K. (1995) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J. Virol. 69, 7430–7436.PubMedGoogle Scholar
  6. 6.
    Rigg, R. J., Chen, J., Dando, J. S., Forestell, S. P., Plavec, I., and Bohnlein, E. (1996) A novel human amphotropic packaging cell line: high titer, complement resistance, and improved safety. Virology 218, 290–295.PubMedCrossRefGoogle Scholar
  7. 7.
    Watanabe, S. and Temin, H. M. (1983) Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors. Mol. Cell Biol. 3, 2241–2249.PubMedGoogle Scholar
  8. 8.
    Dornburg, R. (1995) Reticuloendotheliosis viruses and derived vectors. Gene Ther. 2, 301–310.PubMedGoogle Scholar
  9. 9.
    Miller, A. D., Garcia, J. V., von Suhr, N., Lynch, C. M., Wilson, C., and Eiden, M. V. (1991) Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J. Virol. 65, 2220–2224.PubMedGoogle Scholar
  10. 10.
    Miller, A. D. and Rosman, G. J. (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–982, 984-986, 989-990.PubMedGoogle Scholar
  11. 11.
    Danos, O. and Mulligan, R. C. (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc. Natl. Acad. Sci. USA 85, 6460–6464.PubMedCrossRefGoogle Scholar
  12. 12.
    Chong, H., Starkey, W., and Vile, R. G. (1998) A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences. J. Virol. 72, 2663–2670.PubMedGoogle Scholar
  13. 13.
    Sorge, J., Wright, D., Erdman, V. D., and Cutting, A. E. (1984) Amphotropic retrovirus vector system for human cell gene transfer. Mol. CellBiol. 4, 1730–1737.Google Scholar
  14. 14.
    Sheridan, P. L., Bodner, M., Lynn, A., Phuong, T. K., DePolo, N. J., de la Vega, D. J., et al. (2000) Generation of retroviral packaging and producer cell lines for large-scale vector production and clinical application: improved safety and high titer. Mol. Ther. 2, 262–275.PubMedCrossRefGoogle Scholar
  15. 15.
    (2000) Human gene marker/therapy clinical protocols (complete updated listings). Hum. Gene Ther. 11, 2543–2617.Google Scholar
  16. 16.
    Purcell, D. F., Broscius, C. M., Vanin, E. F., Buckler, C. E., Nienhuis, A. W., and Martin, M. A. (1996) An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer. J. Virol. 70, 887–897.PubMedGoogle Scholar
  17. 17.
    Donahue, R. E., Kessler, S. W., Bodine, D., McDonagh, K., Dunbar, C., Goodman, S., et al. (1992) Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med. 176, 1125–1135.PubMedCrossRefGoogle Scholar
  18. 18.
    Otto, E., Jones-Trower, A., Vanin, E. F., Stambaugh, K., Mueller, S. N., Anderson, W. F., and McGarrity, G. J. (1994) Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum. Gene Ther. 5, 567–575.PubMedCrossRefGoogle Scholar
  19. 19.
    Lower, R., Lower, J., and Kurth, R. (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 93, 5177–5184.PubMedCrossRefGoogle Scholar
  20. 20.
    Jenkins, N. A., Copeland, N. G., Taylor, B. A., and Lee, B. K. (1982) Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 43, 26–36.PubMedGoogle Scholar
  21. 21.
    Hatzoglou, M., Hodgson, C. P., Mularo, F., and Hanson, R. W. (1990) Efficient packaging of a specific VL30 retroelement by psi 2 cells which produce MoMLV recombinant retroviruses. Hum. Gene Ther. 1, 385–397.PubMedCrossRefGoogle Scholar
  22. 22.
    Scadden, D. T., Fuller, B., and Cunningham, J. M. (1990) Human cells infected with retrovirus vectors acquire an endogenous murine provirus. J. Virol. 64, 424–427.PubMedGoogle Scholar
  23. 23.
    Howard, B., Burrascano, M., McCallister, T., Chong, K., Gangavalli, R., Severins-son, L., et al. (1994) Retrovirus-mediated gene transfer of the human gamma-IFN gene: a therapy for cancer. Ann. NY Acad. Sci. 716, 167–187.PubMedCrossRefGoogle Scholar
  24. 24.
    Farson, D., McGuinness, R., Dull, T., Limoli, K., Lazar, R., Jalali, S., et al. (1999) Large-scale manufacturing of safe and efficient retrovirus packaging lines for use in immunotherapy protocols. J. Gene Med. 1, 195–209.PubMedCrossRefGoogle Scholar
  25. 25.
    Bender, M. A., Palmer, T. D., Gelinas, R. E., and Miller, A. D. (1987) Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J. Virol. 61, 1639–1646.PubMedGoogle Scholar
  26. 26.
    Morgenstern, J. P. and Land, H. (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596.PubMedCrossRefGoogle Scholar
  27. 27.
    Salmons, B. and Gunzburg, W. H. (1993) Targeting of retroviral vectors for gene therapy. Hum. Gene Ther. 4, 129–141.PubMedCrossRefGoogle Scholar
  28. 28.
    Dzierzak, E. A., Papayannopoulou, T., and Mulligan, R. C. (1988) Lineagespecific expression of a human beta-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature 331, 35–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Yu, S. F., von Ruden, T., Kantoff, P. W., Garber, C., Seiberg, M., Ruther, U., et al. (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc. Natl. Acad. Sci. USA 83, 3194–3198.PubMedCrossRefGoogle Scholar
  30. 30.
    Hantzopoulos, P. A., Sullenger, B. A., Ungers, G., and Gilboa, E. (1989) Improved gene expression upon transfer of the adenosine deaminase minigene outside the transcriptional unit of a retroviral vector. Proc. Natl. Acad. Sci. USA 86, 3519–3523.PubMedCrossRefGoogle Scholar
  31. 31.
    Hawley, R. G., Sabourin, L. A., and Hawley, T. S. (1989) An improved retroviral vector for gene transfer into undifferentiated cells. Nucleic Acids Res. 17, 4001.PubMedCrossRefGoogle Scholar
  32. 32.
    VandenDriessche, T., Vanslembrouck, V., Goovaerts, I., Zwinnen, H., Vanderhaeghen, M. L., Collen, D., and Chuah, M. K. (1999) Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc. Natl. Acad. Sci. USA 96, 10,379–10,384.PubMedCrossRefGoogle Scholar
  33. 33.
    Nemunaitis, J., Fong, T., Burrows, F., Bruce, J., Peters, G., Ognoskie, N., et al. (1999) Phase I trial of interferon gamma retroviral vector administered intratumorally with multiple courses in patients with metastatic melanoma. Hum. Gene Ther. 10, 1289–1298.PubMedCrossRefGoogle Scholar
  34. 34.
    Karavodin, L. M., Robbins, J., Chong, K., Hsu, D., Ibanez, C., Mento, S., et al. (1998) Generation of a systemic antitumor response with regional intratumoral injections of interferon gamma retroviral vector. Hum. Gene Ther. 9, 2231–2241.PubMedCrossRefGoogle Scholar
  35. 35.
    Greengard, J. S. and Jolly, D. J. (1999) Animal testing of retroviral-mediated gene therapy for factor VIII deficiency. Thromb. Haemost. 82, 555–561.PubMedGoogle Scholar
  36. 36.
    Sallberg, M., Hughes, J., Javadian, A., Ronlov, G., Hultgren, C., Townsend, K., et al. (1998) Genetic immunization of chimpanzees chronically infected with the hepatitis B virus, using a recombinant retroviral vector encoding the hepatitis B virus core antigen. Hum. Gene Ther. 9, 1719–1729.PubMedCrossRefGoogle Scholar
  37. 37.
    Ghivizzani, S. C., Lechman, E. R., Tio, C., Mule, K. M., Chada, S., McCormack, J. E., et al. (1997) Direct retrovirus-mediated gene transfer to the synovium of the rabbit knee: implications for arthritis gene therapy. Gene Ther. 4, 977–982.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang, G., Davidson, B. L., Melchert, P., Slepushkin, V. A., van Es, H. H., Bodner, M., et al. (1998) Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J. Virol. 72, 9818–9826.PubMedGoogle Scholar
  39. 39.
    Le Doux, J. M., Morgan, J. R., Snow, R. G., and Yarmush, M. L. (1996) Proteoglycans secreted by packaging cell lines inhibit retrovirus infection. J. Virol. 70, 6468–6473.PubMedGoogle Scholar
  40. 40.
    Forestell, S. P., Bohnlein, E., and Rigg, R. J. (1995) Retroviral end-point titer is not predictive of gene transfer efficiency: implications for vector production. Gene Ther. 2, 723–730.PubMedGoogle Scholar
  41. 41.
    Battini, J. L., Danos, O., and Heard, J. M. (1995) Receptor-binding domain of murine leukemia virus envelope glycoproteins. J. Virol. 69, 713–719.PubMedGoogle Scholar
  42. 42.
    DePolo, N. J., Harkleroad, C. E., Bodner, M., Watt, A. T., Anderson, C. G., Greengard, J. S., et al. (1999) The resistance of retroviral vectors produced from human cells to serum inactivation in vivo and in vitro is primate species dependent. J. Virol. 73, 6708–6714.PubMedGoogle Scholar
  43. 43.
    Slingsby, J. H., Baban, D., Sutton, J., Esapa, M., Price, T., Kingsman, S. M., et al. (2000) Analysis of 4070A envelope levels in retroviral preparations and effect on target cell transduction efficiency. Hum. Gene Ther. 11, 1439–1451.PubMedCrossRefGoogle Scholar
  44. 44.
    Yap, M. W., Kingsman, S. M., and Kingsman, A. J. (2000) Effects of stoichiometry of retroviral components on virus production. J. Gen. Virol. 81 Pt 9, 2195–2202.PubMedGoogle Scholar
  45. 45.
    Coffin J. M., Hughes S. H., and Varmus H. E. (eds.) (1997) Retroviruses. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  46. 46.
    Yoshimatsu, T., Tamura, M., Kuriyama, S., and Ikenaka, K. (1998) Improvement of retroviral packaging cell lines by introducing the polyomavirus early region. Hum. Gene Ther. 9, 161–172.PubMedCrossRefGoogle Scholar
  47. 47.
    Muenchau, D. D., Freeman, S. M., Cornetta, K., Zwiebel, J. A., and Anderson, W. F. (1990) Analysis of retroviral packaging lines for generation of replication-competent virus. Virology 176, 262–265.PubMedCrossRefGoogle Scholar
  48. 48.
    Lynch, C. M. and Miller, A. D. (1991) Production of high-titer helper virus-free retroviral vectors by cocultivation of packaging cells with different host ranges. J. Virol. 65, 3887–3890.PubMedGoogle Scholar
  49. 49.
    Kinsella, T. M. and Nolan, G. P. (1996) Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim, Y. S., Lim, H. K., and Kim, K. J. (1998) Production of high-titer retroviral vectors and detection of replication-competent retroviruses. Mol. Cells 8, 36–42.PubMedGoogle Scholar
  51. 51.
    Yee, J. K., Friedmann, T., and Burns, J. C. (1994) Generation of high-titer pseudotyped retroviral vectors with very broad host range. Meth. Cell Biol. 43 Pt A, 99–112.CrossRefGoogle Scholar
  52. 52.
    McTaggart, S. and Al-Rubeai, M. (2000) Effects of culture parameters on the production of retroviral vectors by a human packaging cell line. Biotechnol. Prog. 16, 859–865.PubMedCrossRefGoogle Scholar
  53. 53.
    Reeves, L., Smucker, P., and Cornetta, K. (2000) Packaging cell line characteristics and optimizing retroviral vector titer: the National Gene Vector Laboratory experience. Hum. Gene Ther. 11, 2093–2103.PubMedCrossRefGoogle Scholar
  54. 54.
    Paul, R. W., Morris, D., Hess, B. W., Dunn, J., and Overell, R. W. (1993) Increased viral titer through concentration of viral harvests from retroviral packaging lines. Hum. Gene Ther. 4, 609–615.PubMedCrossRefGoogle Scholar
  55. 55.
    Printz, M., Reynolds, J., Mento, S. J., Jolly, D., Kowal, K., and Sajjadi, N. (1995) Recombinant retroviral vector interferes with the detection of amphotropic replication competent retrovirus in standard culture assays. Gene Ther. 2, 143–150.PubMedGoogle Scholar
  56. 56.
    Miller, A. D. and Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell Biol. 6, 2895–2902.PubMedGoogle Scholar
  57. 57.
    Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.PubMedCrossRefGoogle Scholar
  58. 58.
    Hwang, L. H. and Gilboa, E. (1984) Expression of genes introduced into cells by retroviral infection is more efficient than that of genes introduced into cells by DNA transfection. J. Virol. 50, 417–424.PubMedGoogle Scholar
  59. 59.
    Verzeletti, S., Bonini, C., Marktel, S., Nobili, N., Ciceri, F., Traversari, C., and Bordignon, C. (1998) Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: clinical follow-up and improved new vectors. Hum. Gene Ther. 9, 2243–2251.PubMedCrossRefGoogle Scholar
  60. 60.
    Jung, D., Jaeger, E., Cayeux, S., Blankenstein, T., Hilmes, C., Karbach, J., et al. (1998) Strong immunogenic potential of a B7 retroviral expression vector: generation of HLA-B7-restricted CTL response against selectable marker genes. Hum. Gene Ther. 9, 53–62.PubMedCrossRefGoogle Scholar
  61. 61.
    DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P. M., Miller, J. H., and Calos, M. P. (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol. Cell Biol. 7, 379–387.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Thomas W. DubenskyJr.
    • 1
  • Sybille L. Sauter
    • 2
  1. 1.Research, Cancer Vaccines, Cerus CorporationConcord
  2. 2.GenStar Therapeutics Inc.San Diego

Personalised recommendations