Advertisement

Use of Recombinant Adenovirus for Gene Transfer into the Rat Brain

Evaluation of Gene Transfer Efficiency, Toxicity, and Inflammatory and Immune Reactions
  • Andres Hurtado-Lorenzo
  • Anne David
  • Clare Thomas
  • Maria G. Castro
  • Pedro R. Lowenstein
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 76)

Abstract

Adenovirus (Ad) vectors have been used to successfully deliver genes into a wide variety of non-central nervous system (CNS) tissues and organs in animal models of human disease and in several human phase I clinical trials (1, 2, 3). Adenoviruses are easily purified to the high titers required for in vivo administration and they are efficient in transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression and spatially restricted transgene expression within the region of virus administration. To date, most vectors utilized have been first-generation partially deleted vectors. The most commonly used have been E1/E3-deleted vectors, or second- and third-generation vectors with further deletions in E2 orE4.

Keywords

Brain Section Recombinant Adenovirus Stereotaxic Frame Helper Virus Gene Transfer Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Crystal, R. G., McElvany, N. G., Rosenfeld, M. A., Chu, C. S., Mastrangeli, A., Hay, J. G., et al. (1994) Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nature Genet. 8, 42–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Knowles, M. R., Hohneker, K. W., Zhou, Z., Olsen, J. C., Noah, T. L., Hu, P-C., et al. (1995) A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N. Engl. J. Med. 333, 823–831.PubMedCrossRefGoogle Scholar
  3. 3.
    Gahery-Segard, H., Molinier-Frenkel, V., Le Boulaire, C., Saulnier, P., Opolon, P., Lengagne, R., et al. (1997) Phase I trial of recombinant adenovirus gene transfer in lung cancer. Longitudinal study of the immune responses to transgene and viral products. J. Clin. Invest. 100, 2218–2226.PubMedCrossRefGoogle Scholar
  4. 4.
    Yang, Y., Ertl, H. C. J., and Wilson, J. M. (1994) MHC class-I restricted cytotoxic T-lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity 1, 433–442.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang, Y., Li, Q., Ertl, H. C. J., and Wilson, J. M. (1995) Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015.PubMedGoogle Scholar
  6. 6.
    Byrnes, A. P., Rusby, J. E., Wood, M. J. A., and Charlton, H. M. (1995) Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66, 1015–1024.PubMedCrossRefGoogle Scholar
  7. 7.
    Byrnes, A. P., MacLaren, R. E., and Charlton, H. M. (1996a) Immunological instability of persistent adenovirus vectors in the brain: Peripheral exposure to vector leads to renewed inflammation, reduced gene expression and demyelination. J. Neurosci. 16, 3045–3055.PubMedGoogle Scholar
  8. 8.
    Byrnes, A. P., Wood, M. J. A., and Charlton, H. M. (1996b) Role of T cells in inflammation caused by adenovirus vectors in the brain. Gene Ther. 3, 644–651.PubMedGoogle Scholar
  9. 9.
    Dewey, R. A., Morrissey, G., Cowsill, C. M., Stone, D., Bolognani, F., Dodd, N. J. F., et al. (1999) Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngenic glioma treated by adenovirus-mediated gene therapy: Implications for clinical trials. Nature Med. 5, 1256–1263.PubMedCrossRefGoogle Scholar
  10. 10.
    Gerdes, C. A., Castro, M. G., and Lowenstein, P. R. (2000) Strong promoters are the key to highly efficient, non-inflammatory and non-cytotoxic adenoviralmediated transgene delivery into the brain in vivo. Mol. Ther. 2, 330–338.Google Scholar
  11. 11.
    Thomas, C.E., Schiedner, G., Kochanek, S., Castro, M. G., and Lowenstein, P. R. (2000) Peripheral infection with adenovirus causes unexpected long term brain inflammation in animals injected intracranially with first generation, but not with high capacity adenovirus vectors: Towards realistic long term neurological gene therapy for chronic diseases. Proc. Natl. Acad. Sci. USA 97, 7482–7487.PubMedCrossRefGoogle Scholar
  12. 12.
    Trask, T. W., Trask, R. P., Aguilar-Cordova, E., Shine, H. D., Wyde, P. R., Goodman, J. C., et al. (2000) Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with recurrent malignant brain tumors. Mol. Ther. 1, 195–203.PubMedCrossRefGoogle Scholar
  13. 13.
    Thomas, C. E., Birkett, D., Anozie, I., Castro, M. G., and Lowenstein, P. R. (2001a) Acute direct adenoviral vector cytotoxicity and chronic, but not acute, inflammatory responses correlate with decreased vector-mediated transgene expression in the brain. Mol. Ther. 3, 36–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Wood, M. J. A., Charlton, H. M., Wood, K. J., Kajiwara, K., and Byrnes, A. P. (1996a) Immune responses to adenovirus vectors in the nervous system. Trends Neurosci. 19, 497–501.PubMedCrossRefGoogle Scholar
  15. 15.
    Wood, M. J. A., Byrnes, A. P., McMenamin, M., Kajiwara, K., Vine, A., Gordon, I., et al. (1996b) Immune responses to viruses: Practical implications for the use of viruses as vectors for experimental and clinical gene therapy, in Protocols for Gene Transfer in Neuroscience (Lowenstein, P. R. and Enquist, L. W., eds), Wiley, New York, pp. 365–376.Google Scholar
  16. 16.
    Cartmell, T., Southgate, T., Rees, G. S., Castro, M. G., Lowenstein, P. R., and Luheshi, G. N. (1999) Interleukin-1 mediates a rapid inflammatory response after injection of adenoviral vectors into the brain. J. Neurosci. 19, 1517–1523.PubMedGoogle Scholar
  17. 17.
    Benihoud, K., Yeh, P., and Perricaudet, M. (1999) Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10, 440–447.PubMedCrossRefGoogle Scholar
  18. 18.
    Ohmoto, Y., Wood, M. J. A., Charlton, H. M., Kajiwara, K., Perry, V. H., and Wood, K. J. (1999) Variation in the immune response to adenoviral vectors in the brain: influence of mouse strain, environmental conditions and priming. Gene Ther. 6, 471–481.PubMedCrossRefGoogle Scholar
  19. 19.
    Mitani, K., Graham, F. L., Caskey, C. T., and Kochanek, S. (1995) Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc. Natl. Acad. Sci. USA 92, 3854–3858.PubMedCrossRefGoogle Scholar
  20. 20.
    Kochanek, S., Clemens, P. R., Mitani, K., Chen, H. H., Chan, S., and Caskey, C. T. (1996) A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc. Natl. Acad. Sci. USA 93, 5731–5736.PubMedCrossRefGoogle Scholar
  21. 21.
    Parks, R. J., Chen, L., Anton, M., Sankar, U., Rudnicki, M. A., and Graham, F. L. (1996) A helper-dependent adenovirus vector system: Removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13,565–13,570.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang, X., Zhang, G. R., Yang, T., Zhang, W., and Geller, A. I. (2000) Fifty-one kilobase HSV-1 plasmid vector can be packaged using a helper virus free system and supports expression in the rat brain. Biotechniques 1, 102–107.Google Scholar
  23. 23.
    Chen, H. H., Mack, L. M., Kelly, R., Ontell, M., Kochanek, S., and Clemens, P. R. (1997) Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc. Natl. Acad. Sci. USA 94, 1645–1650.PubMedCrossRefGoogle Scholar
  24. 24.
    Morral, N., Parks, R. J., Zhou, H., Langston, C., Schiedner, G., Quinones, J., et al. (1998) High doses of a helper-dependent adenoviral vector yield supraphysi-ological levels of α1-antitrypsin with negligible toxicity. Hum. Gene Ther. 9, 2709–2716.PubMedCrossRefGoogle Scholar
  25. 25.
    Morsy, M. A., Gu, M., Motzel, S., Zhao, J., Lin, J., Su, Q., et al. (1998) An adenoviral vector deleted for all viral coding sequences results in enhanced safety and expression of the leptin transgene. Proc. Natl. Acad. Sci. USA 95, 7866–7871.PubMedCrossRefGoogle Scholar
  26. 26.
    Schiedner, G., Morral, N., Parks, R. J., Wu, Y., Koopmans, S. C., Langston, C., et al. (1998) Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nature Genet. 18, 180–183.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen, H. H., Mack, L. M., Choi, S. Y., Ontell, M., Kochanek, S., and Clemens, P. R. (1999) DNA from both high-capacity and first-generation adenoviral vectors remains intact in skeletal muscle. Hum. Gene Ther. 10, 365–373.PubMedCrossRefGoogle Scholar
  28. 28.
    Morral, N., O’Neal, W., Rice, K., Leland, M., Kaplan, J., Piedra, P. A., et al. (1999) Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc. Natl. Acad. Sci. USA 96, 12,816–12,821.PubMedCrossRefGoogle Scholar
  29. 29.
    Maione, D., Wiznerowicz, M., Delmastro, P., Cortese, R., Ciliberto, G., La Monica, N., et al. (2000) Prolonged expression and effective readministration of erythropoetin delivered with a fully deleted adenoviral vector. Hum. Gene Ther. 11, 859–868.PubMedCrossRefGoogle Scholar
  30. 30.
    Maione, D., Rocca, C. D., Giannetti, P., D’Arrigo, R., Liberatoscioli, L., Franlin, L. L., et al. (2001) An improved helper-dependent adenoviral vector allows persistent gene expression after intramuscular delivery and overcomes preexisting immunity to adenovirus. Proc. Natl. Acad. Sci. USA 98, 5986–5991.PubMedCrossRefGoogle Scholar
  31. 31.
    Thomas, C. E., Schiedner, G., Kochanek, S., Castro, M. G., and Lowenstein, P. R. (2001b) Pre-existing anti-adenoviral immunity is not a barrier to efficient and stable transduction of the brain, mediated by novel high-capacity adenovirus vectors. Hum. Gene Ther. 12, 839–846.PubMedCrossRefGoogle Scholar
  32. 32.
    Burcin, M. M, Schiedner, G., Kochanek, S., Tsai, S. Y., and O’Malley, B. W. (1999) Adenovirus-mediated regulable target gene expression in vivo. Proc. Natl. Acad. Sci. USA 96, 355–360.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith-Arica, J., Morelli, A. E., Larregina, A. T., Smith, J., Lowenstein, P. R., and Castro, M. G. (2000) Cell-type-specific and regulatable transgenesis in the adult brain: adenovirus-encoded combined transcriptional targeting and inducible transgene expression. Mol. Ther. 2, 579–587.PubMedCrossRefGoogle Scholar
  34. 34.
    Sandig, V., Youil, R., Bett, A. J., Franlin, L. L., Oshima, M., Maione, D., et al. (2000) Optimization of the helper-dependent adenovirus system for production and potency in vivo. Proc. Natl. Acad. Sci. USA 97, 1002–1007.CrossRefGoogle Scholar
  35. 35.
    Ringrose, L., Lounnas, V., Ehrlich, L., Buchholz, F., Wade, R., and Stewart, A. E (1998) Comparative kinetic analysis of FLP and Cre recombinases: mathematical models for DNA binding and recombination. J. Mol. Biol. 284, 363–384.PubMedCrossRefGoogle Scholar
  36. 36.
    Buchholz, F., Angrand, P. O., and Stewart, A. E (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotech. 16, 657–662.CrossRefGoogle Scholar
  37. 37.
    Umana, P., Gerdes, C. A., Davis, J. R. E., Castro, M. G., and Lowenstein, P. R. (2001) Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nature Biotechnol. 19, 582–585.CrossRefGoogle Scholar
  38. 38.
    Southgate, T. D., Kingston, P. A., and Castro, M. G. (2001) Current Protocols in Neuroscience (Crawley, J. N., Gerfen, C. R., McKay, R., Rogawski, M. A., Sibley, D. R., and Skolnick, P., eds.), Wiley, New York, pp. 4.23.1–4.23.40Google Scholar
  39. 39.
    Thomas, C. E., Abordo-Adesida, E., Maleniak, T. C., Stone, D., Gerdes, G., and Lowenstein, P. R. (2001) Critical parameters for gene transfer into the brain using adenoviral vectors, in Current Protocols in Neuroscience (Crawley, J. N., Gerfen, C. R., McKay, R., Rogawski, M. A., Sibley, D. R., and Skolnick, P., eds.), Wiley, New York, pp. 4.24.1–4.24.36.Google Scholar
  40. 40.
    Sauer, H. and Oertel, W. H. (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59, 401–415.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Andres Hurtado-Lorenzo
    • 1
  • Anne David
    • 2
  • Clare Thomas
    • 3
  • Maria G. Castro
    • 1
  • Pedro R. Lowenstein
    • 1
  1. 1.Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, and Department of MedicineUniversity of California Los Angeles (UCLA)Los Angeles
  2. 2.Molecular Medicine and Gene Therapy UnitUniversity of ManchesterManchesterUK
  3. 3.Department of Pediatrics and GeneticsStanford UniversityStanford

Personalised recommendations