Skip to main content

Purification of Recombinant Proteins from E. coli by Engineered Inteins

  • Protocol
E. coliGene Expression Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 205))

Abstract

The IMPACT (Intein-Mediated Purification with an Affinity Chitin-Binding Tag) vectors are designed for the isolation of pure, functional, recombinant proteins by a single affinity chromatography step. The IMPACT technology was developed at New England Biolabs (NEB) by exploiting a novel family of proteins termed inteins (recently reviewed in ref. 1). An intein is an internal protein segment responsible for catalyzing an extraordinary post-translational processing event termed protein splicing. Protein splicing results in the precise excision of the intein polypeptide from a protein precursor with the concomitant ligation of the flanking protein sequences, termed exteins. This process requires neither auxiliary proteins nor exogenous energy sources such as ATP (for more information on the requirements and mechanism of protein splicing, see ref. 2). Once the mechanism of protein splicing was elucidated it was realized that a self-splicing intein could be used for protein purification, because the catalytic steps involved in the fission of the peptide bond at either splice junction could be modulated by mutation of amino acid residues at the splice junctions, as described in detail in the following sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu M.-Q., Paulus H., and Chong S. (2000) Fusions to self-splicing inteins for protein purification. Methods Enzymol. 326, 376–418.

    Article  PubMed  CAS  Google Scholar 

  2. Paulus H. (2000) Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–495.

    Article  PubMed  CAS  Google Scholar 

  3. Chong S., Shao Y., Paulus H, Benner J., Perler F. B., and Xu M.-Q. (1996) Protein splicing involving the Saccharomyces cerevisiae VMA intein: the steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J. Biol. Chem. 271, 22, 159–22, 168.

    Google Scholar 

  4. Chong S., Mersha F. B., Comb D. G., et al. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281.

    Article  PubMed  CAS  Google Scholar 

  5. Watanabe T., Ito Y., Yamada T., Hashimoto M., Sekine S., and Tanaka H. (1994) The role of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176, 4465–4472.

    PubMed  CAS  Google Scholar 

  6. Dawson P. E., Muir T. W., Clark-Lewis I., and Kent S. B. (1994) Synthesis of proteins by native chemical ligation. Science 266, 776–779.

    Article  PubMed  CAS  Google Scholar 

  7. Muir T. W., Sondhi D., and Cole P. A. (1998) Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705–6710.

    Article  PubMed  CAS  Google Scholar 

  8. Severinov K. and Muir T. W. (1998) Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J. Biol. Chem. 273, 16, 205–16, 209.

    Article  Google Scholar 

  9. Evans T. C., Jr., Benner J., and Xu M.-Q. (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. 7, 2256–2264.

    Article  PubMed  CAS  Google Scholar 

  10. Evans T. C., Jr., Benner J., and Xu M.-Q. (1999) The in vitro ligation of bacte-rially expressed proteins using an intein from Methanobacterium thermoauto-trophicum. J. Biol. Chem. 274, 3923–3926.

    Article  PubMed  CAS  Google Scholar 

  11. Chong S., Williams K. S., Wotkowicz C., and Xu M.-Q. (1998) Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J. Biol. Chem 273, 10, 567–10, 577.

    Article  Google Scholar 

  12. Chong S., Montello G. E., Zhang A., et al. (1998) Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. 26, 5109–5115.

    Article  PubMed  CAS  Google Scholar 

  13. Wu H., Xu M.-Q., and Liu X.-Q. (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial DnaB intein. Biochim. Biophys. Acta 1387, 422–432.

    Article  PubMed  CAS  Google Scholar 

  14. Mathys S., Evans T. C., Jr., Chute `I. C., et al. (1999) Characterization of a self-splicing mini-intein and its conversion into autocatalytic N-and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231, 1–13.

    Article  PubMed  CAS  Google Scholar 

  15. Wood D. W., Wu W., Belfort G., Derbyshire V., and Belfort M. (1997) A genetic system yields self-splicing inteins for bioseparation. Nat. Biotech. 17, 889–892.

    Google Scholar 

  16. Evans T. C., Jr., Benner J., and Xu M.-Q. (1999) The cyclization and polymerization of bacterially-expressed proteins using modified self-splicing inteins. J. Biol. Chem. 274, 18, 359–18, 363.

    Google Scholar 

  17. Sambrook J., Frisch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  18. Dubendorff J. W. and Studier F. W. (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J. Mol. Biol. 219, 45–59.

    Article  PubMed  CAS  Google Scholar 

  19. Southworth M. W., Amaya K., Evans T. C., Xu M.-Q., and Perler F. B. (1999) Purification of proteins fused to either the amino or carboxy terminus of the Myco-bacterium xenopi Gyrase A intein. Biotechniques 27, 110–120.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Xu, MQ., Evans, T.C. (2003). Purification of Recombinant Proteins from E. coli by Engineered Inteins. In: Vaillancourt, P.E. (eds) E. coliGene Expression Protocols. Methods in Molecular Biology™, vol 205. Humana Press. https://doi.org/10.1385/1-59259-301-1:43

Download citation

  • DOI: https://doi.org/10.1385/1-59259-301-1:43

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-008-3

  • Online ISBN: 978-1-59259-301-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics