FISH Detection of HER2 Amplification in Breast Cancer

  • Rosemary E. Mueller
  • Frances P. O’Malley
Part of the Methods in Molecular Biology™ book series (MIMB, volume 204)


Gene amplification is frequently detected in human tumor cells and is thought to make an important contribution to tumorigenesis (1,2). Systematic scanning of the whole genome of tumor cells using comparative genomic hybridization has revealed that gene copy number changes occur concurrently in many areas of the genome in solid tumors (3). Detailed analysis of altered regions of DNA has revealed complex DNA rearrangements often involving multiple genes and spanning several megabases in solid tumors. Overlaid on gene rearrangements are frequent changes in chromosome ploidy (4, 5, 6). The analysis of amplified regions of DNA can lead to the identification of novel genes that contribute to tumorigenesis, but is complicated by the co-amplification of neighboring genes in these large, complex rearrangements. Many tumors show such a high degree of general DNA and chromosome rearrangement that some researchers argue the critical event in tumorigenesis is genomic instability (7, 8, 9, 10) with gene amplification being a consequence.


Lymph Node Negative HER2 Overexpression HER2 Gene HER2 Protein HER2 Amplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schwab M. and Amler L. C. (1990) Amplification of cellular oncogenes: a predictor of clinical outcome in human cancer. Genes Chromosom. Cancer 1, 181–193.CrossRefPubMedGoogle Scholar
  2. 2.
    Schwab M. (1998) Amplification of oncogenes in human cancer cells. Bioessays 20, 473–479.CrossRefPubMedGoogle Scholar
  3. 3.
    Tirkkonen M., Tanner M., Karhu R., Kallioniemi A., Isola J., and Kallioniemi O. P. (1998) Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosome Cancer 21, 177–184.CrossRefGoogle Scholar
  4. 4.
    Rennstam K., Baldetorp B., Kytola S., Tanner M., and Isola J. (2001) Chromosomal rearrangements and oncogene amplification precede aneuploidization in the genetic evolution of breast cancer. Cancer Res. 61, 1214–1219.PubMedGoogle Scholar
  5. 5.
    Jarvinen T. A., Tanner M., Barlund M., Borg A., and Isola J. (1999) Characterization of topoisomerase II alpha gene amplification and deletion in breast cancer. Genes Chromosom. Canc. 26, 142–150.CrossRefGoogle Scholar
  6. 6.
    Walch A., Specht K., Bink K., et al. (2001) Her-2/neu gene amplification, elevated mRNA expression, and protein overexpression in the metaplasia-dysplasia-adenocarcinoma sequence of Barrett’s esophagus. Lab. Invest. 81, 791–801.PubMedGoogle Scholar
  7. 7.
    Lengauer C., Kinzler K. W., and Vogelstein B. (1997) Genetic instability in colorectal cancers. Nature 386, 623–627.CrossRefPubMedGoogle Scholar
  8. 8.
    Pihan G. A. and Doxsey S. J. (1999) The mitotic machinery as a source of genetic instability in cancer. Semin. Cancer Biol. 9, 289–302.CrossRefPubMedGoogle Scholar
  9. 9.
    Duesberg P., Rasnick D., Li R., Winters L., Rausch C., and Hehlmann R. (1999) How aneuploidy may cause cancer and genetic instability. Anticancer Res. 19, 4887–4906.PubMedGoogle Scholar
  10. 10.
    Li R., Sonik A., Stindl R., Rasnick D., and Duesberg P. (2000) Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc. Natl. Acad. Sci. USA 97, 3236–3241.CrossRefPubMedGoogle Scholar
  11. 11.
    Fitzgibbons P. L., Page D. L., Weaver D., et al. (2000) Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch. Pathol. Lab. Med. 124, 966–978.PubMedGoogle Scholar
  12. 12.
    Shih C., Padhy L. C., Murray M., and Weinberg R. A. (1981) Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290, 261–264.CrossRefPubMedGoogle Scholar
  13. 13.
    Coussens L., Yang-Feng T. L., Liao Y. C., et al. (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230, 1132–1139.CrossRefPubMedGoogle Scholar
  14. 14.
    Semba K., Kamata N., Toyoshima K., and Yamamoto T. (1985) A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc. Natl. Acad. Sci. USA 82, 6497–6501.CrossRefPubMedGoogle Scholar
  15. 15.
    Schechter A. L., Stern D. F., Vaidyanathan L., et al. (1984) The neu oncogene: an erb-Brelated gene encoding a 185,000-Mr tumour antigen. Nature 312, 513–516.CrossRefPubMedGoogle Scholar
  16. 16.
    Ullrich A. and Schlessinger J. (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212.CrossRefPubMedGoogle Scholar
  17. 17.
    Graus-Porta D., Beerli R. R., Daly J. M., and Hynes N. E. (1997) ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 16, 1647–1655.CrossRefPubMedGoogle Scholar
  18. 18.
    Hynes N. E. and Stern D. F. (1994) The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 1198, 165–184.PubMedGoogle Scholar
  19. 19.
    Tzahar E. and Yarden Y. (1998) The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim. Biophys. Acta 1377, M25–M37.PubMedGoogle Scholar
  20. 20.
    Hackel P. O., Zwick E., Prenzel N., and Ullrich A. (1999) Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr. Opin. Cell Biol. 11, 184–189.CrossRefPubMedGoogle Scholar
  21. 21.
    Yarden Y. and Sliwkowski M. X. (2001) Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137.CrossRefPubMedGoogle Scholar
  22. 22.
    Niemann C., Brinkmann V., Spitzer E., et al. (1998) Reconstitution of mammary gland development in vitro: requirement of c-met and c-erbB2 signaling for branching and alveolar morphogenesis. J. Cell Biol. 143, 533–545.CrossRefPubMedGoogle Scholar
  23. 23.
    Darcy K. M., Zangani D., Shea-Eaton W., et al. (2000) Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells. In Vitro Cell Dev. Bio. Anim. 36, 578–592.Google Scholar
  24. 24.
    Spencer K. S., Graus-Porta D., Leng J., Hynes N. E., and Klemke R. L. (2000) ErbB2 is necessary for induction of carcinoma cell invasion by ErbB family receptor tyrosine kinases. J. Cell Biol. 148, 385–397.CrossRefPubMedGoogle Scholar
  25. 25.
    Slamon D. J., Clark G. M., Wong S. G., Levin W. J., Ullrich A., and McGuire W. L. (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182.CrossRefPubMedGoogle Scholar
  26. 26.
    Slamon D. J., Godolphin W., Jones L. A., et al. (1989) Studies of the HER-2/neu protooncogene in human breast and ovarian cancer. Science 244, 707–712.CrossRefPubMedGoogle Scholar
  27. 27.
    Thor A. D., Schwartz L. H., Koerner F. C., et al. (1989) Analysis of c-erb B-2 expression in breast carcinomas with clinical follow-up. Cancer Res. 49, 7147–7152.PubMedGoogle Scholar
  28. 28.
    Kallioniemi O. P., Kallioniemi A., Kurisu W., et al. (1992) ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 89, 5321–5325.CrossRefPubMedGoogle Scholar
  29. 29.
    Paik S., Hazan R., Fisher E. R., et al. (1990) Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. J. Clin. Oncol. 8, 103–112.PubMedGoogle Scholar
  30. 30.
    Thor A. D., Liu S., Edgerton S., et al. (2000) Activation (tyrosine phosphorylation) of ErbB-2 (HER-2/neu): a study of incidence and correlation with outcome in breast cancer. J. Clin. Oncol. 18, 3230–3239.PubMedGoogle Scholar
  31. 31.
    Kallioniemi O. P., Holli K., Visakorpi T., Koivula T., Helin H. H., and Isola J. J. (1991) Association of c-erbB-2 protein over-expression with high rate of cell proliferation, increased risk of visceral metastasis and poor long-term survival in breast cancer. Int. J. Cancer 49, 650–655.CrossRefPubMedGoogle Scholar
  32. 32.
    Albanell J., Bellmunt J., Molina R., et al. (1996) Node-negative breast cancers with p53 (-)/HER2-neu (-) status may identify women with very good prognosis. Anticancer Res. 16, 1027–1032.PubMedGoogle Scholar
  33. 33.
    Giai M., Roagna R., Ponzone R., De B. M., Dati C., and Sismondi P. (1994) Prognostic and predictive relevance of c-erbB-2 and ras expression in node positive and negative breast cancer. Anticancer Res. 14, 1441–1450.PubMedGoogle Scholar
  34. 34.
    Gusterson B. A., Gelber R. D., Goldhirsch A., et al. (1992) Prognostic importance of c-erbB-2 expression in breast cancer. International (Ludwig) Breast Cancer Study Group. J. Clin. Oncol. 10, 1049–1056.PubMedGoogle Scholar
  35. 35.
    Marks J. R., Humphrey P. A., Wu K., et al. (1994) Overexpression of p53 and HER-2/ neu proteins as prognostic markers in early stage breast cancer. Ann. Surg. 219, 332–341.CrossRefPubMedGoogle Scholar
  36. 36.
    Press M. F., Pike M. C., Chazin V. R., et al. (1993) Her-2/neu expression in nodenegative breast cancer: direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease. Cancer Res. 53, 4960–4970.PubMedGoogle Scholar
  37. 37.
    Quenel N., Wafflart J., Bonichon F., et al. (1995) The prognostic value of c-erbB2 in primary breast carcinomas: a study on 942 cases. Breast Cancer Res. Treat. 35, 283–291.CrossRefPubMedGoogle Scholar
  38. 38.
    Rilke F., Colnaghi M. I., Cascinelli N., et al. (1991) Prognostic significance of HER-2/ neu expression in breast cancer and its relationship to other prognostic factors. Int. J. Cancer 49, 44–49.CrossRefPubMedGoogle Scholar
  39. 39.
    Seshadri R., Firgaira F. A., and Horsafall D. J. (1993) Clinical significance of Her-2/neu oncogene amplification in primary breast cancer. J. Clin. Oncol. 11, 1936–1942.PubMedGoogle Scholar
  40. 40.
    Winstanley J., Cooke T., Murrary G. D., et al. (1991) The long term prognostic significance of c-erb B-2 in primary breast cancer. Br. J. Cancer 63, 447–450.CrossRefPubMedGoogle Scholar
  41. 41.
    Allred D. C., Clark G. M., Molina R., et al. (1992) Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum. Pathol. 23, 974–979.CrossRefPubMedGoogle Scholar
  42. 42.
    Bianchi S., Paglierani M., Zampi G., et al. (1993) Prognostic significance of c-erbB-2 expression in node negative breast cancer. Br. J. Cancer 67, 625–629.CrossRefPubMedGoogle Scholar
  43. 43.
    Borg A., Tandon A. K., Sigurdsson H., et al. (1990) HER-2/neu amplification predicts poor survival in node-positive breast cancer. Cancer Res. 50, 4332–4337.PubMedGoogle Scholar
  44. 44.
    Clark G. M. and McGuire W. L. (1991) Follow-up study of HER-2/neu amplification in primary breast cancer. Cancer Res. 51, 944–948.PubMedGoogle Scholar
  45. 45.
    Lovekin C., Ellis I. O., Locker A., et al. (1991) c-erb B-2 oncoprotein expression in primary and advanced breast cancer. Br. J. Cancer 63, 439–443.CrossRefPubMedGoogle Scholar
  46. 46.
    McCann A. H., Dervan P. A., O’Regan M., et al. (1991) Prognostic significance of c-erbB-2 and estrogen receptor status in human breast cancer. Cancer Res. 51, 3296–3303.PubMedGoogle Scholar
  47. 47.
    Noguchi M., Koyasaki N., Ohta N., et al. (1992) C-erbB-2 oncoprotein expression versus internal mammary lymph node metastases as additional prognostic factors in patients with axillary lymph node-positive breast cancer. Cancer 69, 2953–2960.CrossRefPubMedGoogle Scholar
  48. 48.
    O’Reilly S. M., Barnes D. M., Camplejohn R. S., Bartkova J., Gregory W. M., and Richards M. A. (1991) The relationship between c-erbB-2 expression, S-phase fraction and prognosis in breast cancer. Br. J. Cancer 63, 444–446.CrossRefPubMedGoogle Scholar
  49. 49.
    Naldoni C., Bruzzi P., Bucchi L., et al. (1990) Cohort Study of Women Affected by Gross Cystic Disease: Correlation between Cationic and Hormonal Composition of Breast Cyst Fluid and the Risk of Breast Cancer. In: Ann. NY Acad. Sci., A. Angeli, et al., ed., pp. 272–275. The New York Academy of Sciences, New York.Google Scholar
  50. 50.
    Rosen P. P., Lesser M. L., Arroyo C. D., Cranor M., Borgen P., and Norton L. (1995) Immunohistochemical detection of HER2/neu in patients with axillary lymph node negative breast carcinoma. A study of epidemiologic risk factors, histologic features, and prognosis. Cancer 75, 1320–1326.CrossRefPubMedGoogle Scholar
  51. 51.
    Toikkanen S., Helin H., Isola J., and Joensuu H. (1992)Prognostic significance of HER-2 oncoprotein expression in breast cancer: a 30-year follow-up. J. Clin. Oncol. 10, 1044–1048.PubMedGoogle Scholar
  52. 52.
    Ross J. and Fletcher J. A. (1999) The HER-2/neu oncogene: Prognostic factor, predictive factor and target for therapy. Semin. Cancer Biol. 9, 125–138.CrossRefPubMedGoogle Scholar
  53. 53.
    Press M. F., Bernstein L., Thomas P. A., et al. (1997) HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J. Clin. Oncol. 15, 2894–2904.PubMedGoogle Scholar
  54. 54.
    Andrulis I. L., Bull S. B., Blackstein M. E., et al. (1998) neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J. Clin. Oncol. 16, 1340–1349.PubMedGoogle Scholar
  55. 55.
    Thor A. D., Berry D. A., Budman D. R., et al. (1998) erbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. J. Natl. Cancer Inst. 90, 1346–1360.CrossRefPubMedGoogle Scholar
  56. 56.
    Paik S., Bryant J., Park C., Fisher B., Tan-Chiu E., Hyams D., et al. (1998) erbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptornegative breast cancer. J. Natl. Cancer Inst. 90, 1361–1370.CrossRefPubMedGoogle Scholar
  57. 57.
    Paik S., Bryant J., Tan-Chiu E., et al. (2000) Her2 and choice of adjuvant chemotherapy for invasive breast cancer: National Surgical Adjuvant Breast and Bowel Project protocol B-15. J. Natl. Cancer Inst. 92, 1991–1998.CrossRefPubMedGoogle Scholar
  58. 58.
    Muss H. B., Thor A. D., Berry D. A., et al. (1994) c-erbB-2 expression and response to adjuvant therapy in women with node-positive early breast cancer [published erratum appears in N. Engl. J. Med. (1994) Jul; 331, 211]. N. Engl. J. Med. 330, 1260–1266.CrossRefPubMedGoogle Scholar
  59. 59.
    Bianco A. R., De Laurentils M., Carlomagno C., et al. (1998) 20 year update of the Naples GUN trial of adjuvant breasst cancer therapy: Evidence of interaction between C-erb-B2 expression and Tamoxifen efficacy. Am. Soc. Clin. Oncol. 17, 97a–373.Google Scholar
  60. 60.
    Bianco A., De Laurentiis M., Carlomagno C., Gallo C., Panico L., and De Torres I. (2000) Overexpression predicts adjuvant Tamoxifen (TAM) failure for early breast cancer (EBC): Complete data at 20 year of the Naples GUN randomized trial. Am. Soc. Clin. Oncol. 17, 97a–289.Google Scholar
  61. 61.
    Elledge R. M., Green S., Ciocca D., et al. (1998) HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a Southwest Oncology Group Study. Clin Cancer Res. 4, 7–12.PubMedGoogle Scholar
  62. 62.
    Soubeyran I., Quenel N., Coindre J. M., et al. (1996) pS2 protein: a marker improving prediction of response to neoadjuvant tamoxifen in post-menopausal breast cancer patients. Br. J. Cancer 74, 1120–1125.CrossRefPubMedGoogle Scholar
  63. 63.
    Berry D. A., Muss H. B., Thor A. D., et al. (2000) HER-2/neu and p53 expression versus tamoxifen resistance in estrogen receptor-positive, node-positive breast cancer. J. Clin. Oncol. 18, 3471–3479.PubMedGoogle Scholar
  64. 64.
    Sliwkowski M. X., Lofgren J. A., Lewis G. D., Hotaling T. E., Fendly B. M., and Fox J. A. (1999) Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 26, 60–70.PubMedGoogle Scholar
  65. 65.
    Pegram M. D., Lopez A., Konecny G., and Slamon D. J. (2000) Trastuzumab and chemotherapeutics: drug interactions and synergies. Semin. Oncol. 27, 21–25, 92-100.PubMedGoogle Scholar
  66. 66.
    Baselga J., Tripathy D., Mendelsohn J., et al. (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J. Clin. Oncol. 14, 737–744.PubMedGoogle Scholar
  67. 67.
    Pegram M. D., Pauletti G., and Slamon D. J. (1998) HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res. Treat. 52, 65–77.CrossRefPubMedGoogle Scholar
  68. 68.
    Slamon D. J., Leyland-Jones B., Shak S., et al. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792.CrossRefPubMedGoogle Scholar
  69. 69.
    Genentech Inc. (1998) Herceptin (Trastuzumab) Package Insert. (unpublished)Google Scholar
  70. 70.
    Slamon D. J., Leyland-Jones B., Shak S., et al. (1998) Addition of Herceptin™ (humanized anti-HER 2 antibody) as a single agent in 222 women with HER 2 overexpression who relapsed following chemotherapy for metastatic breast cancer (HER 2+/mbc) markedly increases anticancer activity: A randomized, multinational controlled phase III trial. Proc Amer Soc Clin Oncol, Abst #377.Google Scholar
  71. 71.
    Lebeau A., Deimling D., Kaltz C., et al. (2001) Her-2/neu analysis in archival tissue samples of human breast cancer: comparison of immunohistochemistry and fluorescence in situ hybridization. J. Clin. Oncol. 19, 354–363.PubMedGoogle Scholar
  72. 72.
    Kakar S., Puangsuvan N., Stevens J. M., et al. (2000) HER-2/neu assessment in breast cancer by immunohistochemistry and fluorescence in situ hybridization: comparison of results and correlation with survival. Mol. Diagn. 5, 199–207.CrossRefPubMedGoogle Scholar
  73. 73.
    Ridolfi R. L., Jamehdor M. R., and Arber J. M. (2000) HER-2/neu testing in breast carcinoma: a combined immunohistochemical and fluorescence in situ hybridization approach. Mod. Pathol. 13, 866–873.CrossRefPubMedGoogle Scholar
  74. 74.
    Wang S., Saboorian M. H., Frenkel E., Hynan L., Gokaslan S. T., and Ashfaq R. (2000) Laboratory assessment of the status of Her-2/neu protein and oncogene in breast cancer specimens: comparison of immunohistochemistry assay with fluorescence in situ hybridization assays. J. Clin. Pathol. 53, 374–381.CrossRefPubMedGoogle Scholar
  75. 75.
    Farabegoli F., Ceccarelli C., Santini D., et al. (1999) c-erbB-2 over-expression in amplified and non-amplified breast carcinoma samples. Int. J. Cancer 84, 273–277.CrossRefPubMedGoogle Scholar
  76. 76.
    O’Malley F. P., Parkes R., Latta E., et al. (2001) Comparison of HER2/neu status assessed by quantitative polymerase chain reaction and immunohistochemistry. Am. J. Clin. Pathol. 115, 504–511.CrossRefPubMedGoogle Scholar
  77. 77.
    Jacobs T. W., Gown A., Yaziji H., Barnes M., and Schnitt S. J. (1999) Specificity of HercepTest in determining HER-2/neu status of breast cancers using United States Food and Drug Administration-approved scoring system. J. Clin. Oncol. 17, 1983–1987.PubMedGoogle Scholar
  78. 78.
    Hoang M. P., Sahin A. A., Ordonez N. G., and Sneige N. (2000) HER-2/neu gene amplification compared with HER-2/neu protein overexpression and interobserver reproducibility in invasive breast carcinoma. Am. J. Clin. Pathol. 113, 852–859.CrossRefPubMedGoogle Scholar
  79. 79.
    Tubbs R. R., Pettay J. D., Roche P. C., Stoler M. H., Jenkins R. B., and Grogan T. M. (2001) Discrepancies in clinical laboratory testing of eligibility for trastuzumab therapy: apparent immunohistochemical false-positives do not get the message. J. Clin. Oncol. 19, 2714–2721.PubMedGoogle Scholar
  80. 80.
    Jacobs T. W., Gown A., Yaziji H., Barnes M., and Schnitt S. J. (1999) Comparison of fluorescence in situ hybridization and immunohistochemistry for the evaluation of HER-2/neu in breast cancer. J. Clin. Oncol. 17, 1974–1982.PubMedGoogle Scholar
  81. 81.
    King W., Proffitt J., Morrison L., Piper J., Lane D., and Seelig S. (2001) The role of fluorescence in situ hybridization technologies in molecular diagnostics and disease management Mol. Diagn. 5, 309–319.Google Scholar
  82. 82.
    Specht K., Richter T., Muller U., Walch A., Werner M., and Hofler H. (2001) Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffinembedded tumor tissue. Am. J. Pathol. 158, 419–429.CrossRefPubMedGoogle Scholar
  83. 83.
    Wolf N. G., Abdul-Karim F. W., Farver C., Schrock E., Du M. S., and Schwartz S. (1999) Anaylsis of ovarian borderline tumors using comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromo. Cancer 25, 307–315.CrossRefGoogle Scholar
  84. 84.
    Nicholson J., Wickramasinghe C., Ross F., Crolla J., and Ellison D. Imbalances of chromosome 17 in medulloblastomas detemined by comparative genomic hybridization and fluorescence in situ hybridization. Mol. Pathol. 53, 313–319.Google Scholar
  85. 85.
    Collins C., Volik S., Kowbel D., Ginzinger D., Ylstra B., Cloutier T., Hawkins T., Predki P., Martin C., Wernick M., Kuo W. L, Alberts A., and Gray J. W. (2001) Comprehensive genome sequence analysis of a breast cancer amplicon. Genome Res. 11, 1034–1042.CrossRefPubMedGoogle Scholar
  86. 86.
    Rummukainen J., Kytola S., Karhu R., Farnebo F., Larsson C., and Isola J. J. (2001) Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotping. Cancer Genet. Cytogenet. 126, 1–7.CrossRefPubMedGoogle Scholar
  87. 87.
    Brecevic L., Verdorfer I., Saul W., Trautmann U., and Gebhart E. (2001) The cytogenetic view of standard comparative genomic hybridization (CGH): deletions of 20q in human leukemia as a measure of the sensitivity of the technique. Anticancer Res. 21, 89–92.PubMedGoogle Scholar
  88. 88.
    Lehmann U., Glockner S., Kleeberger W., von Wasielewski H. F., and Kreipe H. (2000) Detection of gene amplification in arcival breast cancer specimens by laser-assisted microdissection and quantitative real-time polymerase chain reaction. Am. J. Pathol. 156, 1855–1864.CrossRefPubMedGoogle Scholar
  89. 89.
    Mezzelani A., Alasio L., Bartoli C., Bonora M. G., Pierotti M. A., Rilke F., and Pilotti S. (1999) c-erbB2/neu and chromosome 17 analysis in breast cancer by FISH on archival cytological fine-needle aspirates. Brit. J. Cancer 80, 519–525.CrossRefPubMedGoogle Scholar
  90. 90.
    McManus D. T., Patterson A. H., Maxwell P., Humphreys M. W., and Anderson N. H. (1999) Fluorescence in situ hybridization detection of erbB2 amplification in breast cancer fine needle aspirates. Mol. Pathol. 52, 75–77.CrossRefPubMedGoogle Scholar
  91. 91.
    Klijanienko J., Couturier J., Galut M., El-Naggar A. K., Maciorowski Z., Padoy E., Mosseri V., and Vielh P. (1999) Detection and quantitation by fluorescence in situ hybridization (FISH) and image analysis of HER-2/neu gene amplication in breast cancer fine-needle samples. Cancer 87, 312–318.CrossRefPubMedGoogle Scholar
  92. 92.
    Sauter G., Feichter G., Torhorst J., Moch H., Novotna H., Wagner U., Durmuller U., and Waldman F. M. (1996) Fluorescence in situ hybridization for detecting erbB-2 amplification in breast tumor fine needle aspiration biopsies. Acta Cytol. 40, 164–173.PubMedGoogle Scholar
  93. 93.
    Moore J. G., To V., Patel S. J., and Sneige N. (2000) HER-2/neu gene amplification in breast imprint cytology analyzed by fluorescence in situ hybridization: direct comparison with companion tissue sections. Diagn. Cytopathol. 23, 299–302.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Rosemary E. Mueller
    • 1
  • Frances P. O’Malley
    • 2
  1. 1.Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and University of TorontoTorontoCanada
  2. 2.Department of Pathology and Laboratory MedicineMount Sinai HospitalTorontoCanada

Personalised recommendations