Characterization of Constitutional Chromosome Abnormalities by Comparative Genomic Hybridization

  • Brynn Levy
  • Kurt Hirschhorn
Part of the Methods in Molecular Biology™ book series (MIMB, volume 204)

Abstract

Comparative genomic hybridization (CGH) is a molecular cytogenetic technique that can characterize excess and missing cytogenetic material often unrecognizable by G-banding, in a one step global screening procedure. The advantage of CGH over conventional fluorescence in situ hybridization (FISH) with whole chromosome paints (wcps) and multicolor FISH is its ability to identify not only the chromosome from which the additional unknown material was derived but also to map the region involved to specific bands on the source chromosome. Defining the origin of additional cytogenetic material by FISH with various probes is expensive and laborious as numerous wcps may be required until the source chromosome is identified. In addition, the number of available region specific probes is limited and covers only a fraction of the genome.

Keywords

Formaldehyde Microwave EDTA Electrophoresis Syringe 

References

  1. 1.
    Bryndorf T., Kirchhoff M., Rose H., Maahr J., Gerdes T., Karhu R., et al. (1995) Comparative genomic hybridization in clinical cytogenetics. Am. J. Hum. Genet. 57, 1211–1220.PubMedGoogle Scholar
  2. 2.
    Levy B., Gershin I. F., Desnick R. J., Babu A., Gelb B. D., Hirschhorn K., et al. (1997) Characterization of a de novo unbalanced chromosome rearrangement by comparative genomic hybridization and fluorescence in situ hybridization. Cytogenet. Cell Genet. 76, 68–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Levy B., Dunn T. M., Kaffe S., Kardon N., and Hirschhorn K. (1998) Clinical applications of comparative genomic hybridization. Genet. Med. 1, 4–12.CrossRefPubMedGoogle Scholar
  4. 4.
    Levy B., Papenhausen P. R., Tepperberg J. H., Dunn T. M., Fallet S., Magid M. S., et al. (2000) Prenatal molecular cytogenetic diagnosis of partial tetrasomy 10p due to neocentromere formation in an inversion duplication analphoid marker chromosome. Cytogenet. Cell Genet. 91, 165–170.CrossRefPubMedGoogle Scholar
  5. 5.
    Gardner R. J. M. and Sutherland G. R., eds. (1996) Chromosome Abnormalities and Genetic Counseling. Oxford University Press, New York.Google Scholar
  6. 6.
    Kallioniemi A., Kallioniemi O. P., Sudar D., Rutovitz D., Gray J. W., Waldman F., et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818–821.CrossRefPubMedGoogle Scholar
  7. 7.
    du Manoir S., Speicher M. R., Joos S., Schröck E., Popp S., Dohner H., et al. (1993) Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum. Genet. 90, 590–610.CrossRefPubMedGoogle Scholar
  8. 8.
    Kallioniemi O. P., Kallioniemi A., Sudar D., Rutovitz D., Gray J. W., Waldman F., et al. (1993) Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin. Cancer Biol. 4, 41–46.PubMedGoogle Scholar
  9. 9.
    Kallioniemi O. P., Kallioniemi A., Piper J., Isola J., Waldman F. M., Gray J. W., et al. (1994) Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 10, 231–243.CrossRefPubMedGoogle Scholar
  10. 10.
    Piper J., Rutkowitz D., Sudar D., Kallioniemi A., Kallioniemi O. P., Waldman F. M., et al. (1995) Computer image analysis of comparative genomic hybridization. Cytometry 19, 10–26.CrossRefPubMedGoogle Scholar
  11. 11.
    Sambrook J., Fritsch E. F., and Maniatis T., eds. (1989) Molecular Cloning: A Laboratory Manual. Vol. 1–3. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York.Google Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Brynn Levy
    • 1
  • Kurt Hirschhorn
    • 1
  1. 1.Departments of Human Genetics and PediatricsMount Sinai School of MedicineNew York

Personalised recommendations