Chemical and Enzymatic Release of Glycans from Glycoproteins

  • Tony Merry
  • Sviatlana Astrautsova
Part of the Methods in Molecular Biology™ book series (MIMB, volume 213)


The majority of proteins are posttranslationally modified, and the most significant modification to many secreted and membrane-associated proteins of eukaryotic cells is glycosylation, that is, the attachment of one or more oligosaccharide (glycan) chains. Glycans may be attached to the peptide backbone through different types of linkage but they usually are subdivided into those attached to glycoproteins primarily through an amide linkage to asparagine residues (N-linked glycans), and those attached through an O-glycosidic linkage to serine or threonine residues (O-linked glycans) or where the carbohydrates form part of a glycosylphosphatidyl inositol moiety (GPI) attached to the C-terminus of the peptide. Other types of linkage occur in certain other glycoconjugates such as the linkage to hydroxylysine residues in collagen and β-xylose of glycosaminoglycan chains in proteoglycans to serine residues in the peptide core.


Enzymatic Release Protein Binding Membrane Anhydrous Hydrazine Hydroxylysine Residue Chitobiose Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kobata, A. (1984) In Biology of Carbohydrates, vol. 2 (Ginsburg, V. and Robbins, P. W., eds.), John Wiley & Sons, New York, pp. 87–162.Google Scholar
  2. 2.
    Rademacher, T. W., Parekh, R. B., and Dwek, R. A. (1988) Glycobiology. Annu. Rev. Biochem. 57, 785–838.PubMedCrossRefGoogle Scholar
  3. 3.
    O’Neill, R. A. (1996) Enzymatic release of oligosaccharides from glycoproteins for chromatographic and electrophoretic analysis. J. Chromatogr. A 720, 201–215.CrossRefGoogle Scholar
  4. 4.
    Takasaki, S., Mizuochi, T., and Kobata, A. (1982) Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides. Methods Enzymol. 83, 263–268.PubMedCrossRefGoogle Scholar
  5. 5.
    Patel, T., Bruce, J., Merry, A., Bigge, C., Wormald, M., Jaques, A., and Parekh, R. (1993) Use of hydrazine to release in intact and unreduced form both N-and O-linked oligosaccharides from glycoproteins. Biochemistry 32, 679–693.PubMedCrossRefGoogle Scholar
  6. 6.
    Dwek, R. A., Edge, C. J., Harvey, D. J., Wormald, M. R., and Parekh, R. B. (1994) Analysis of glycoprotein-associated oligosaccharides. Annu. Rev. Biochem. 62, 65–100.CrossRefGoogle Scholar
  7. 7.
    Küster, B., Wheeler, S. F., Hunter, A. P., Dwek, R. A., and Harvey, D. J. (1997) Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal. Biochem. 250, 82–101.PubMedCrossRefGoogle Scholar
  8. 8.
    Rudd, P. M., Guile, G. R., Kuster, B., Harvey, D. J., Opdenakker, K., and Dwek, R. A. (1997) Oligosaccharide sequencing technology. Nature 388, 205–207.PubMedCrossRefGoogle Scholar
  9. 9.
    Rudd, P. M., Morgan, B. P., Wormald, M. R., Harvey, D. J., van den Berg, C. W., Davis, S.J., et al. (1997) The glycosylation of the complement regulatory protein, human erythrocyte CD59. J. Biol. Chem. 14, 272:11.Google Scholar
  10. 10.
    Tarentino, A. L., Quinones, G., Schrader, W. P., Changchien, L. M., and Plummer, T. H., Jr. (1992) Multiple endoglycosidase (Endo) F activities expressed by Flavobacterium meningosepticum. Endo F1: molecular cloning, primary sequence, and structural relationship to Endo H. J. Biol. Chem. 267, 3868–3872.PubMedGoogle Scholar
  11. 11.
    Plummer, T. H., Jr. and Tarentino, A. L. (1991) Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology 1, 257–263.PubMedCrossRefGoogle Scholar
  12. 12.
    Trimble, R. B. and Tarentino, A. L. (1991) Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans. J. Biol. Chem. 266, 1646–1651.PubMedGoogle Scholar
  13. 13.
    Tarentino, A. L., Trimble, R. B., and Plummer, T. H., Jr. (1989) Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins. Methods Cell Biol. 32, 111–139.PubMedCrossRefGoogle Scholar
  14. 14.
    Maley, F., Trimble, R. B., Tarentino, A. L. and Plummer, T. H. Jr. (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Analyt. Biochem. 180, 195.PubMedCrossRefGoogle Scholar
  15. 15.
    Tarentino, A. L. and Maley, F. (1975) A comparison of the substrate specificities of endo-beta-N-acetylglucosaminidases from Streptomyces griseus and Diplococcus pneumoniae. Biochem. Biophys. Res. Commun. 67, 455–462.PubMedCrossRefGoogle Scholar
  16. 16.
    Tai, T., Yamashita, K., Ito, S., and Kobata, A. (1977) Structures of the carbohydrate moiety of ovalbumin glycopeptide III and the difference in specificity of endo-beta-N-acetylglucosaminidases CII and H. J. Biol. Chem. 252, 6687–6694.PubMedGoogle Scholar
  17. 17.
    Freeze, H. H. and Etchison, J. R. (1984) Presence of a nonlysosomal endo-beta-N-acetylglucosaminidase in the cellular slime mold Dictyostelium discoideum. Arch. Biochem. Biophys. 232, 414–421.PubMedCrossRefGoogle Scholar
  18. 18.
    Kadowaki, S., Yamamoto, K., Fujisaki, M., Izumi, K., Tochikura, T., and Yokoyama, T. (1990) Purification and characterization of a novel fungal endo-beta-N-acetylglucosaminidase acting on complex oligosaccharides of glycoproteins. Agric. Biol. Chem. 54, 97–106.PubMedGoogle Scholar
  19. 19.
    Kol, O., Brassart, C., Spik, G., Montreuil, J., and Bouquelet, S. (1989) Specificity towards oligomannoside and hybrid type glycans of the endo-beta-N-acetylglucosaminidase B from the basidiomycete Sporotrichum dimorphosporum. Glycoconjugate J. 6, 333–348.CrossRefGoogle Scholar
  20. 20.
    Ogata-Arakawa, M., Muramatsu, T., and Kobata, A. (1977) Partial purification and characterization of an endo-beta-N-acetylglucosaminidase from fig extract. J. Biochem. 82, 611–614.PubMedGoogle Scholar
  21. 21.
    DeGasperi, R., Li, Y.-T., and Li, S.-C. (1989) Presence of two endo-beta-N-acetylglucosaminidases in human kidney. J. Biol. Chem. 264, 9329–9334.PubMedGoogle Scholar
  22. 22.
    Schachter, H. (1986) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem. Cell. Biol. 64, 163–181.PubMedCrossRefGoogle Scholar
  23. 23.
    Schachter, H. and Brockhausen, I. (1992) In Glycoconjugates (Allen, H. J. and Kisailus, E. C., eds.), Marcel Dekker, New York, p. 263.Google Scholar
  24. 24.
    Hart, G. W., Haltiwanger, R. S., Holt, G. D., and Kelly, W. G. (1989) Glycosylation in the nucleus and cytoplasm. Annu. Rev. Biochem. 58, 841–874.PubMedCrossRefGoogle Scholar
  25. 25.
    Harris, R. H. and Spellman, M. W. (1993) O-linked fucose and other post-translational modifications unique to EGF modules. Glycobiology 3, 219–224.PubMedCrossRefGoogle Scholar
  26. 26.
    Jacob, G. S. and Scudder, P. (1994) Glycosidases in structural analysis. Methods Enzymol. 230, 280–299.PubMedCrossRefGoogle Scholar
  27. 27.
    Merry, A. H., Bruce, J., Bigge, C., and Ioannides, A. (1992) Automated simultaneous release of intact and unreduced N-and O-linked glycans from glycoproteins. Biochem. Soc. Trans. 20, 91.Google Scholar
  28. 28.
    Zitzmann, N. and Ferguson, M. A. (1999) Analysis of the carbohydrate components of glycosylphophatidyeinositol structures using Fluorescent labeling. Methods Mo. Biol. 116, 73–89.Google Scholar

Copyright information

© Humana Press Inc. 2003

Authors and Affiliations

  • Tony Merry
    • 1
  • Sviatlana Astrautsova
    • 2
  1. 1.OxfordUK
  2. 2.Department of MicrobiologyGrodno State Medical UniversityGrodnoBelarus

Personalised recommendations