Skip to main content

Thermodynamics of PNA Interactions with DNA and RNA

  • Protocol
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 208))

Abstract

Thermodynamic properties of peptide nucleic acids (PNA) and their complexes with nucleic acids have attracted increasing attention. More detailed thermodynamic information is desired in order to understand and improve the behavior of PNAs in various contexts, e.g., in the design of polymerase chain reaction (PCR) probes and potentially for the use of PNA in therapeutics. The ultimate goal is to predict the thermodynamic properties of PNA-nucleic acid complexes of any sequence. For DNA and RNA thermodynamics, this has been achieved for relatively short (10–30 base pairs) doublestranded complexes (duplexes). These studies have yielded nearest neighbor parameters (ΔH° and ΔS°) for all possible combinations of base pairs in DNA and RNA (1), as well as for single mismatches in DNA (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner D. H. (1996) Thermodynamics of base-pairing. Curr. Opin. Struct. Biol. 6, 299–304.

    Article  PubMed  CAS  Google Scholar 

  2. Peyret N., Seneviratne P. A., Allawi H. T., and SantaLucia J. (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A·A, C·C, G·G, and T·T mismatches. Biochemistry 38, 3468–3477.

    Article  PubMed  CAS  Google Scholar 

  3. Egholm M., Buchardt O., Christensen L., Behrens C., Freier S. M., Driver D. A., et al. (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365, 566–568.

    Article  PubMed  CAS  Google Scholar 

  4. Tomac S., Sarkar M., Ratilainen T., Wittung P., Nielsen P. E., Nordén B., and Gräslund A. (1996) Ionic effects on the stability and conformation of peptide nucleic acid (PNA) complexes. J. Am. Chem. Soc. 118, 5544–5552.

    Article  CAS  Google Scholar 

  5. Ratilainen T., Holmén A., Tuite E., Haaima G., Christensen L., Nielsen P. E., and Nordén B. (1998) Hybridization of peptide nucleic acid. Biochemistry 37, 12,331–12,342.

    Article  PubMed  CAS  Google Scholar 

  6. Ratilainen T., Holmén A., Tuite E., Nielsen P. E., and Nordén B. (2000) Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry 39, 7781–7791.

    Article  PubMed  CAS  Google Scholar 

  7. Eriksson M. and Nielsen P. E. (1996) PNA nucleic acid complexes. Structure, stability and dynamics. Q. Rev. Biophys. 29, 369–394.

    Article  PubMed  CAS  Google Scholar 

  8. Giesen U., Kleider W., Berding C., Geiger A., Ørum H., and Nielsen P. E. (1998) A formula for thermal stability (Tm) prediction of PNA/DNA duplexes. Nucleic Acids Res. 26, 5004–5006.

    Article  PubMed  CAS  Google Scholar 

  9. KilsÅ Jensen K., Ørum H., Nielsen P. E., and Nordén B. (1997) Kinetics for hybridization of Peptide Nucleic Acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36, 5072–5077.

    Article  Google Scholar 

  10. Marky L. A. and Breslauer K. J. (1987) Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26, 1601–1620.

    Article  PubMed  CAS  Google Scholar 

  11. Puglisi J. D. and Tinoco J. I. (1989) Absorbance melting curves of RNA. Methods Enzymol. 180, 304–325.

    Article  PubMed  CAS  Google Scholar 

  12. Noble S. A., Bonham M. A., Bisi J. E., Bruckenstein D. A., Brown P. H., Brown S. C., et al. (1995) Impact of biophysical parameters on the biological assessment of peptide nucleic-acids, antisense inhibitors of gene-expression. Drug Dev. Res. 34, 184–195.

    Article  CAS  Google Scholar 

  13. Gildea B. D., Casey S., MacNeill J., Perry-O’Keefe H., Sørensen D., and Coull J. M. (1998) PNA solubility enhancers. Tetrahedr. Lett. 39, 7255–7258.

    Article  CAS  Google Scholar 

  14. Sjöback R., Nygren J., and Kubista M. (1995) Absorption and fluorescence properties of fluorescein. Spectroch. Acta Part A 51, L7–L21.

    Article  Google Scholar 

  15. Dawson R. M. C., Elliott D. C., Elliott W. H., and Jones K. M. (1986) Data for Biochemical Research, 3rd ed. Oxford University Press, New York.

    Google Scholar 

  16. Holmén A. and Nordén B. (1999) Thermodynamics of PNA-nucleic acid interactions, in Peptide Nucleic Acids: Protocols and Applications (Nielsen P. E., and Egholm M., eds.) Horizon Scientific Press, Wymondham, UK, pp 87–97.

    Google Scholar 

  17. Cantor C. R. and Schimmel P. R. (1980) Biophysical Chemistry part 3: The Behaviour of Biological Macromolecules. W. H. Freeman, New York.

    Google Scholar 

  18. SantaLucia J., Allawi H. T., and Seneviratne A. (1996) Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562.

    Article  PubMed  CAS  Google Scholar 

  19. Allawi H. T. and SantaLucia J. (1998) Nearest neighbor thermodynamic parameters for internal GA mismatches in DNA. Biochemistry 37, 2170–2179.

    Article  PubMed  CAS  Google Scholar 

  20. Bevington P. R. (1969) Data Reduction an Error Analysis for the Physical Sciences. McGraw-Hill, New York.

    Google Scholar 

  21. Breslauer K. J., Frank R., Blöcker H., and Marky L. A. (1986) Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750.

    Article  PubMed  CAS  Google Scholar 

  22. Lundbäck T. and Härd T. (1994) Sequence specific DNA-binding dominated by dehydration. Proc. Natl. Acad. Sci. USA 93, 4754–4759.

    Article  Google Scholar 

  23. Sen S. and Nilsson L. (2001) MD simulations of homomorphous PNA, DNA, and RNA singles strands: Characterization and comparison of conformations and dynamics. J. Am. Chem. Soc. 123, 7414–7422.

    Article  PubMed  CAS  Google Scholar 

  24. Vesnaver G. and Breslauer K. J. (1991) The contribution of DNA single-stranded order to the thermodynamics of duplex formation. Proc. Natl. Acad. Sci. USA 88, 3569–3573.

    Article  PubMed  CAS  Google Scholar 

  25. Chakrabarti M. C. and Schwarz F. P. (1999) Thermal stability of PNA/DNA and DNA/DNA duplexes by differential scanning calorimetry. Nucleic Acids Res. 27, 4801–4806.

    Article  PubMed  CAS  Google Scholar 

  26. Haynie D. T. (1998) in Biocalorimetry: Applications of Calorimetry in the Biological Sciences (Ladbury J. E., and Chowdhry B. Z., eds.), John Wiley & Sons, Chichester, UK, 183–205.

    Google Scholar 

  27. Von Hippel P. H. and Schleich T. (1969) Structure and stability of biological macromolecules, in Biological Macromolecules, (Timasheff S. N. and Fasman G., eds.), Marcel Dekker, New York, pp. 417–574.

    Google Scholar 

  28. Bloomfield V., and Carpenter I. L. (1993) Biological polyelectrolytes, in Polyelectrolytes; Science and Technology (Hara M., ed.), Marcel Dekker, New York, pp. 77–125.

    Google Scholar 

  29. Collins K. D. and Washabaugh M. W. (1985) The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 18, 323–422.

    Article  PubMed  CAS  Google Scholar 

  30. Record M. T., Jr. (1975) Effects of Na+ and Mg2+ ions on the helixcoil transition of DNA. Biopolymers 14, 2137–2158.

    Article  CAS  Google Scholar 

  31. Krakauer H. and Sturtevant J. M. (1968) Heats of the helix-coil transitions of the poly A-poly U complexes. Biopolymers 6, 491–512.

    Article  PubMed  CAS  Google Scholar 

  32. Record M. T., Jr. (1967) Electrostatic effects on polynucleotide transitions. I. Behavior at neutral pH. Biopolymers 5, 975–992.

    Article  PubMed  CAS  Google Scholar 

  33. Igloi G. L. (1998) Variability in the stability of DNA-peptide nucleic acid (PNA) single-base mismatched duplexes: Real-time hybridization during affinity electrophoresis in PNA-containing gels. Proc. Natl. Acad. Sci. USA 95, 8562–8567.

    Article  PubMed  CAS  Google Scholar 

  34. Allawi H. T. and SantaLucia J. (1997) Thermodynamics and NMR of internal GT mismatches in DNA. Biochemistry 36, 10581–10594.

    Article  PubMed  CAS  Google Scholar 

  35. Aboul-ela F., Koh D., and Tinoco I. J. (1985) Base-base mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X, Y = A,C,G,T). Nucleic Acids Res. 13, 4811–4824.

    Article  PubMed  CAS  Google Scholar 

  36. Allawi H. T. and SantaLucia J. (1998) Nearest-neighbor thermodynamics of internal A center dot C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37, 9435–9444.

    Article  PubMed  CAS  Google Scholar 

  37. Gilli P., Ferretti V., Gilli G., and Borea P. A. (1994) Enthalpyentropy compensation in drug-receptor binding. J. Phys. Chem. 98, 1515–1518.

    Article  CAS  Google Scholar 

  38. Gelfand C. A., Plum G. E., Grollman A. P., Johnson F., and Breslauer K. J. (1998) The impact of an exocyclic cytosine adduct on DNA duplex properties: significant thermodynamic consequences despite modest lesion-induced structural alterations. Biochemistry 37, 12507–12512.

    Article  PubMed  CAS  Google Scholar 

  39. Blasko A., Dempcy R. O., Minyat E. E., and Bruice T. C. (1996) Association of short-strand DNA oligomers with guanidinium-linked nucleosides. A kinetic and thermodynamic study. J. Am. Chem. Soc. 118, 7892–7899.

    Article  CAS  Google Scholar 

  40. Krug R. R., Hunter W. G., and Grieger R. A. (1976) Enthalpyentropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 80, 2341–2351.

    Article  CAS  Google Scholar 

  41. Krug R. R., Hunter W. G., and Grieger R. A. (1976) Enthalpyentropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J. Phys. Chem. 80, 2335–2341.

    Article  CAS  Google Scholar 

  42. Chalikian T. V., Völker J., Plum G. E., and Breslauer K. J. (1999) A more unified picture for the thermodynamics of nucleic acid duplex melting: A characterization by calorimetric and volumetric techniques. Proc. Natl. Acad. Sci. USA 96, 7853–7858.

    Article  PubMed  CAS  Google Scholar 

  43. Rouzina I. and Bloomfield V. A. (1999) Heat capacity effects on the melting of DNA. 1. General aspects. Biophys. J. 77, 3242–3251.

    Article  PubMed  CAS  Google Scholar 

  44. Rouzina I. and Bloomfield V. A. (1999) Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects. Biophys. J. 77, 3252–3255.

    Article  PubMed  CAS  Google Scholar 

  45. Schwarz F. P., Robinson S., and Butler J. M. (1999) Thermodynamic comparisons of PNA/DNA and DNA/DNA hybridization reactions at ambient temperature. Nucleic Acids Res. 27, 4792–4800.

    Article  PubMed  CAS  Google Scholar 

  46. Ratilainen T., Lincoln P., and Nordén B. (2001) A simple model for gene-targeting. Biophys. J. 81, 2876–2885.

    Article  PubMed  CAS  Google Scholar 

  47. Zhong M., Marky L. A., Kallenbach N. R., and Kupke D. W. (1997) Thermodynamics of dT-dT base pair mismatching in linear DNA duplexes and three-arm DNA junctions. Biochemistry 36, 2485–2491.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Ratilainen, T., Nordén, B. (2002). Thermodynamics of PNA Interactions with DNA and RNA. In: Nielsen, P.E. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 208. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-290-2:59

Download citation

  • DOI: https://doi.org/10.1385/1-59259-290-2:59

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-976-6

  • Online ISBN: 978-1-59259-290-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics