Skip to main content

PNA Technology

  • Protocol
Peptide Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 208))

Abstract

Peptide nucleic acids (PNA) were originally conceived and designed as sequence-specific DNA binding reagents targeting the DNA major groove in analogy to triplex-forming oligonucleotides. However, instead of the sugar-phosphate backbone of oligonucleotides PNA was designed with a pseudopeptide backbone (1). Once synthesized, it was apparent that PNA oligomers based on the aminoethylglycin backbone with acetyl linkers to the nucleobases (see Fig. 1) are extremely good structural mimics of DNA (or RNA), being able to form very stable duplex structures with Watson-Crick complementary DNA, RNA (or PNA) oligomers (24). It also quickly became clear that triplexes formed between one homopurine DNA (or RNA) strand and two sequence complementary PNA strands are extraordinarily stable. Furthermore, this stability is the reason why homopyrimidine PNA oligomers when binding complementary targets in double-stranded DNA do not do so by conventional (PNA-DNA2) triplex formation, but rather prefer to form a triplex-invasion complex in which the DNA duplex is invaded by an internal PNA2-DNA triplex (see Fig. 2) (5,6). This type of binding is restricted to homopurine/homopyrimidine DNA targets in full analogy to dsDNA targeting by triplex forming oligo nucleotides (see Fig. 3). However, other binding modes for targeting dsDNA is available for PNA (7) of which the double duplex invasion (8) is believed to become very important, because it allows the formation of very stable complexes at mixed purine-pyrimidine targets as long as they have a reasonable (∼ 50%) A/T content (see Fig. 4). The DNA/RNA recognition properties of PNA combined with excellent chemical and biological stability and tremendous chemical-synthetic flexibility has made PNA of interest to a range of scientific disciplines ranging from (organic) chemistry to biology to medicine (916).

Chemical structures of PNA as compared to DNA. In terms of binding properties, the amino-end of the PNA corresponds to the 5’-end of the DNA.

Structural modes for binding of PNA oligomers to sequence complementary targets in double-stranded DNA.

Triplex invasion by homopyrimidine PNA oligomers. One PNA strand binds via Watson-Crick base pairing (preferably in the antiparallel orientation), whereas the other binds via Hoogsteen base pairing (preferably in the parallel orientation). It is usually advantageous to connect the two PNA strands covalently via a flexible linker into a bis-PNA, and to substitute all cytosines in the Hoogsteen strand with pseudoisocytosines (ψiC), which do not require low pH for N3 “protonation.”

Double-duplex invasion of pseudo complementary PNAs. In order to obtain efficient binding the target (and thus the PNAs) should contain at least 50% AT (no other sequence constraints), and in the PNA oligomers all A/T base pairs are substituted with 2,6-diaminopurine/ 2-thiouracil “base pairs.” This base pair is very unstable due to steric hindrance. Therefore the two sequence-complementary PNAs will not be able to bind each other, but they bind their DNA complement very well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen P. E., Egholm M., Berg R. H., and Buchardt O. (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  2. Egholm M., Buchardt O., Christensen L., Behrens C., Freier S. M., Driver D. A., et al. (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365, 566–568.

    Article  PubMed  CAS  Google Scholar 

  3. Jensen K. K., Ørum H., Nielsen P. E., and Nordén B. (1997) Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36, 5072–5077.

    Article  PubMed  CAS  Google Scholar 

  4. Wittung P., Nielsen P. E., Buchardt O., Egholm M., and Nordén B. (1994) DNA-like double helix formed by peptide nucleic acid. Nature 368, 561–563.

    Article  PubMed  CAS  Google Scholar 

  5. Nielsen P. E., Egholm M., and Buchardt O. (1994) Evidence for (PNA)2/DNA triplex structure upon binding of PNA to dsDNA by strand displacement. J. Mol. Recogn. 7, 165–170.

    Article  CAS  Google Scholar 

  6. Cherny D. Y., Belotserkovskii B. P., Frank-Kamenetskii M. D., Egholm M., Buchardt O., Berg R. H., and Nielsen P. E. (1993) DNA unwinding upon strand-displacement binding of a thyminesubstituted polyamide to double-stranded DNA. Proc. Natl. Acad. Sci. USA 90, 1667–1670.

    Article  PubMed  CAS  Google Scholar 

  7. Nielsen P. E. (2001) Peptide nucleic acid targeting of doublestranded DNA. Methods Enzymol. 340, 329–340.

    Article  PubMed  CAS  Google Scholar 

  8. Lohse J., Dahl O., and Nielsen P. E. (1999) Double duplex invasion by peptide nucleic acid: a general principle for sequencespecific targeting of double-stranded DNA. Proc. Natl. Acad. Sci. USA 96, 11,804–11,808.

    Article  PubMed  CAS  Google Scholar 

  9. Nielsen P. E. and Haaima G. (1997) Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone. Chem. Soc. Rev. 26, 73–78.

    Article  CAS  Google Scholar 

  10. Nielsen P. E. and Egholm M., ed. (1999) Peptide Nucleic Acids: Protocols and Applications. Horizon Press, Wymondham, Norfolk, UK.

    Google Scholar 

  11. Nielsen P. E. (1999) Peptide nucleic acid. A molecule with two identities. Acc. Chem. Res. 32, 624–630.

    Article  CAS  Google Scholar 

  12. Nielsen P. E. Antisense peptide nucleic acids. Curr. Opin. Mol. Ther. 2000, 2, 282–287.

    PubMed  CAS  Google Scholar 

  13. Nielsen P. E. (2001) Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology. Curr. Opin. Biotechnol. 12, 16–20.

    Article  PubMed  CAS  Google Scholar 

  14. Nielsen P. E. (2001) Peptide nucleic acids as antibacterial agents via the antisense principle. Expert. Opin. Invest. Drugs 10, 331–341.

    Article  CAS  Google Scholar 

  15. Ray A. and Nordén B. (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J. 14, 1041–1060.

    PubMed  CAS  Google Scholar 

  16. Ganesh K. N. and Nielsen P. E. (2000) Peptide nucleic acids: analogs and derivatives. Curr. Org. Chem. 4, 931–943.

    Article  CAS  Google Scholar 

  17. Dueholm K. L., Egholm M., Behrens C., Christensen L., Hansen H. F., Vulpius T., et al. (1994) Synthesis of peptide nucleic acid monomers containing the four natural nucleobases: thymine, cytosine, adenine and guanine, and their oligomerization. J. Org. Chem. 59, 5767–5773.

    Article  CAS  Google Scholar 

  18. Christensen L., Fitzpatrick R., Gildea B., Petersen K. H., Hansen H. F., Koch T., et al. (1995) Solid-phase synthesis of peptide nucleic acids (PNA) J. Peptide Sci. 3, 175–183.

    Article  Google Scholar 

  19. Thomson S. A., Josey J. A., Cadilla R., Gaul M. D., Hassman C. F., Luzzio M. J., et al. (1995) Fmoc mediated synthesis of peptide nucleic acids. Tetrahedr. Lett. 22, 6179–6194.

    Google Scholar 

  20. Egholm M., Christensen L., Dueholm K. L., Buchardt O., Coull J., and Nielsen P. E. (1995) Efficient pH-independent sequencespecific DNA binding by pseudoisocytosine-containing bis-PNA. Nucleic Acids Res. 23, 217–222.

    Article  PubMed  CAS  Google Scholar 

  21. Eldrup A. B., Dahl O., and Nielsen P. E. (1997) A novel peptide nucleic acid monomer for recognition of thymine in triple helix structures. J. Amer. Chem. Soc. 119, 11,116–11,117.

    Article  CAS  Google Scholar 

  22. Haaima G., Hansen H. F., Christensen L., Dahl O., and Nielsen P. E. (1997) Increased DNA binding and sequence discrimination of PNA oligomers containing 2,6-diaminopurine. Nucleic Acids Res. 25, 4639–4643.

    Article  PubMed  CAS  Google Scholar 

  23. Eldrup A., Nielsen B. B., Haaima G., Rasmussen H., Kastrup J. S., Christensen C., and Nielsen P. E. (2001) 1,8-Naphthyridin-2(1H)-ones. Novel bi-and tricyclic analogues of thymine in peptide nucleic acids (PNA) Eur. J. Org. Chem. 1781–1790.

    Google Scholar 

  24. Pooga M., Soomets U., Hällbrink M., Valkna A, Saar K., Rezaei K., et al. (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 857–861.

    Article  PubMed  CAS  Google Scholar 

  25. Aldrian-Herrada G., Desarménien M. G., Orcel H., Boissin-Agasse L., Méry J., Brugidou J., and Rabié A. (1998) A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity Depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Res. 26, 4910–4916.

    Article  PubMed  CAS  Google Scholar 

  26. Koppelhus U., Awasthi S., Zachar V., Holst H. U., and Nielsen P. E. Cell Dependent DifferentialCellular Uptake of PNA, Peptides and PNA-peptide conjugates. Antisense Nucl. Acid Drug Devel., in press.

    Google Scholar 

  27. Cutrona G., Carpaneto E. M., Ulivi M., Roncella S., Landt O., Ferrarini M., et al. (2000) Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nature Biotechnol. 18, 300–303.

    Article  CAS  Google Scholar 

  28. Hamilton S. E., Simmons C. G., Kathiriya I. S., and Corey D. R. (1999) Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem. Biol. 6, 343–351.

    Article  PubMed  CAS  Google Scholar 

  29. Ljungstrøm T., Knudsen H., and Nielsen P. E. (1999) Cellular uptake of adamantyl conjugated peptide nucleic acids. Bioconjug. Chem. 10, 965–972.

    Article  PubMed  CAS  Google Scholar 

  30. Karras J. G., Maier M. A., Lu T., Watt A., and Manoharan M. (2001) Peptide nucleic acids are potent modulators of endogenous pre-mRNA splicing of the murine interleukin-5 receptor-alpha chain. Biochemistry 40, 7853–7859.

    Article  PubMed  CAS  Google Scholar 

  31. Faruqi A. F., Egholm M., and Glazer P. M. (1998) Peptide nucleic acid-targeted mutagenesis of a chromosomal gene in mouse cells. Proc. Natl. Acad. Sci. USA 95, 1398–1403.

    Article  PubMed  CAS  Google Scholar 

  32. Herbert B. S., Pitts A. E., Baker S. I., Hamilton S. E., Wright W. E., Shay J. W. et al. (1999) Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc. Natl. Acad. Sci. USA 96, 14,276–14,281.

    Article  PubMed  CAS  Google Scholar 

  33. Shammas M. A., Simmons C. G., Corey D. R., and Reis R. J. S. (1999) Telomerase inhibition by peptide nucleic acids reverses “immortality” of transformed human cells. Oncogene 18, 6191–6200.

    Article  PubMed  CAS  Google Scholar 

  34. Doyle D. F., Braasch D. A., Simmons C. G., Janowski B. A., Corey D. R. (2001) Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry 40, 53–64.

    Article  PubMed  CAS  Google Scholar 

  35. Mologni L., Marchesi E., Nielsen P. E., and Gambacorti-Passerini C. (2001) Inhibition of promyelocytic leukemia (PML)/retinoic acid receptor-alpha and PML expression in acute promyelocytic leukemia cells by anti-PML peptide nucleic acid. Cancer Res. 61, 5468–5473.

    PubMed  CAS  Google Scholar 

  36. Knudsen H. and Nielsen P. E. (1996) Antisense properties of duplex-and triplex-forming PNAs. Nucleic Acids Res. 24, 494–500.

    Article  PubMed  CAS  Google Scholar 

  37. Mologni L., Lecoutre P., Nielsen P. E., and Gambacorti-Passerini C. (1998) Additive antisense effects of different PNAs on the in vitro translation of the PML/RAR. alpha. gene. Nucleic Acids Res. 26, 1934–1938.

    Article  PubMed  CAS  Google Scholar 

  38. Hanvey J. C., Peffer N. J., Bisi J. E., Thomson S. A., Cadilla R., Josey J. A. et al. (1992) Antisense and antigen properties of peptide nucleic acids. Science (Washington, DC ) 258, 1481–1485.

    Article  CAS  Google Scholar 

  39. Summerton J. (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim. Biophys. Acta 1489, 141–158.

    PubMed  CAS  Google Scholar 

  40. Dias N., Dheur S., Nielsen P. E., Gryaznov S., Van Aerschot A., Herdewijn P. et al. (1999) Antisense PNA tridecamers targeted to the coding region of Ha-ras mRNA arrest polypeptide chain elongation. J. Mol. Biol. 294, 403–416.

    Article  PubMed  CAS  Google Scholar 

  41. Sazani P., Kang S. H., Maier M. A., Wei C., Dillman J., Summerton J., et al. (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res. 29, 3965–3974.

    PubMed  CAS  Google Scholar 

  42. Nielsen P. E., Egholm M., Buchardt O. (1994) Sequence-specific transcription arrest by peptide nucleic acid bound to the DNA template strand. Gene 149, 139–145.

    Article  PubMed  CAS  Google Scholar 

  43. Nielsen P. E., Egholm M., Berg R. H., and Buchardt O. (1993) Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res. 21, 197–200.

    Article  PubMed  CAS  Google Scholar 

  44. Vickers T. A., Griffity M. C., Ramasamy K., Risen L. M., Freier S. M. (1995) Inhibition of NF-?B specific transcriptional activation by PNA strand invasion. Nucleic Acids Res. 23, 3003–3008.

    Article  PubMed  CAS  Google Scholar 

  45. Demidov V. V., Yavnilovich M. V., Belotserkovskii B. P., Frank-Kamenetskii M. D., and Nielsen P. E. (1995) Kinetics and mechanism of polyamide (“peptide”) nucleic acid binding to duplex DNA. Proc. Natl. Acad. Sci. USA 92, 2637–2641.

    Article  PubMed  CAS  Google Scholar 

  46. Bentin T., and Nielsen P. E. (1996) Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA “Breathing” dynamics. Biochemistry 35, 8863–8869.

    Article  PubMed  CAS  Google Scholar 

  47. Larsen H. J., and Nielsen P. E. (1996) Transcription-mediated binding of peptide nucleic acid (PNA) to double-stranded DNA: sequencespecific suicide transcription. Nucleic Acids Res. 24, 458–463.

    Article  PubMed  CAS  Google Scholar 

  48. Møllegaard N. E., Buchardt O., Egholm M., and Nielsen P. E. (1994) Peptide nucleic acid-DNA strand displacement loops as artificial transcription promoters. Proc. Natl. Acad. Sci. USA 91, 3892–3895.

    Article  PubMed  Google Scholar 

  49. Wang G., Xu X., Pace B., Dean D. A., Glazer P. M., Chan P., et al. (1999) Peptide nucleic acid (PNA) binding-mediated induction of human Γ-globin gene expression. Nucleic Acids Res 27, 2806–2813.

    Article  PubMed  CAS  Google Scholar 

  50. Zelphati O., Liang X., Hobart P., and Felgner P. L. (1999) Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Human Gene Ther. 10, 15–24.

    Article  CAS  Google Scholar 

  51. Brandén L. J., Christensson B., Smith C. I. E. (2001) In vivo nuclear delivery of oligonucleotides via hybridizing bifunctional peptides. Gene Ther. 8, 84–87.

    Article  PubMed  Google Scholar 

  52. Brandén L. J., Mohamed A. J., and Smith C. I. E. (1999) A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA. Nat. Biotechnol. 17, 784–787.

    Article  PubMed  Google Scholar 

  53. Liang K. W., Hoffman E. P., and Huang L. (2000) Targeted delivery of plasmid DNA to myogenic cells via transferrin-conjugated peptide nucleic acid. Mol. Ther. 1, 236–243.

    Article  PubMed  CAS  Google Scholar 

  54. Good L. and Nielsen P. E. (1998) Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc. Natl. Acad. Sci. USA 95, 2073–2076.

    Article  PubMed  CAS  Google Scholar 

  55. Good L., Sandberg R., Larsson O., Nielsen P. E., and Wahlestedt C. (2000) Antisense PNA effects in Escherichia coli are limited by the outer-membrane LPS layer. Microbiology 146, 2665–2670.

    PubMed  CAS  Google Scholar 

  56. Good L., Awasthi S. K., Dryselius R., Larsson O., and Nielsen P. E. (2001) Bactericidal antisense effects of peptide-PNA conjugates. Nature Biotechnol. 19, 360–364.

    Article  CAS  Google Scholar 

  57. Schou C., Hansen H. F., Nielsen P. E., Beck F., Ravn B. T., Kristensen E., (2000) Antibiotic Effects of PNA (Peptide Nucleic Acid) Antisense Compounds Against Multiresistant Echerichia coli. Poster presented at ICAAC, 2000, Toronto).

    Google Scholar 

  58. Stock R. P., Olvera A., Sanchez R., Saralegui A., Scarfi S., Sanchez-Lopez R. et al. (2001) Inhibition of gene expression in Entamoeba histolytica with antisense peptide nucleic acid oligomers. Nature Biotechnol. 19, 231–234.

    Article  CAS  Google Scholar 

  59. Koppelhus U., Zachar V., Nielsen P. E., Liu X., Eugen-Olsen J., and Ebbesen P. (1997) Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucleic Acids Res. 25, 2167–2173.

    Article  PubMed  CAS  Google Scholar 

  60. Lee R., Kaushik N., Modak M. J., Vinayak R., and Pandey V. N. (1998) Polyamide nucleic acid targeted to the primer binding site of the HIV-1 RNA genome blocks in Vitro HIV-1 reverse transcription. Biochemistry 37, 900–910.

    Article  PubMed  CAS  Google Scholar 

  61. Boulmé F., Freund F., Moreau S., Nielsen P. E., Gryaznov S., Toulmé J. J. et al. (1998) Modified (PNA, 2’-O-methyl and phosphoramidate) anti-TAR antisense oligonucleotides as strong and specific inhibitors of in vitro HIV-1 reverse transcription. Nucleic Acids Res. 26, 5492–5500.

    Article  PubMed  Google Scholar 

  62. Boulme F., Freund F., Gryaznov S., Nielsen P. E., Tarrago-Litvak L., and Litvak S. (2000) Study of HIV-2 primer-template initiation complex using antisense oligonucleotides. Eur. J. Biochem. 267, 2803–2811.

    Article  PubMed  CAS  Google Scholar 

  63. Mayhood T., Kaushik N., Pandey P. K., Kashanchi F., Deng L., and Pandey V. N. (2000) Inhibition of Tat-mediated transactivation of HIV-1 LTR transcription by polyamide nucleic acid targeted to TAR hairpin element. Biochemistry 39, 11,532–11,539.

    Article  PubMed  CAS  Google Scholar 

  64. Sei S., Yang Q. E., O’Neill D., Yoshimura K., and Mitsuya H. (2000) Identification of a key target sequence to block human immunodeficiency virus type 1 replication within the gag-pol transframe domain. J. Virol. 74, 4621–4633.

    Article  PubMed  CAS  Google Scholar 

  65. Nielsen P. E. (1993) Peptide nucleic acid (PNA): A model structure for the primordial genetic material. Origins Life Evol. Biosph. 23, 323–327.

    Article  CAS  Google Scholar 

  66. Miller S. L. (1953) A production of amino acids under possible primitive earth conditions. Science 117, 528–529.

    Article  PubMed  CAS  Google Scholar 

  67. Oro J. (1960) Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Commun. 2, 407–412.

    Article  Google Scholar 

  68. Böhler C., Nielsen P. E., and Orgel L. E. (1995) Template switching between PNA and RNA oligonucleotides. Nature 376, 578–581.

    Article  PubMed  Google Scholar 

  69. Schmidt J. G., Nielsen P. E., Orgel L. E. (1997) Information transfer from peptide nucleic acids to RNA by template-directed syntheses. Nucleic Acids Res. 25, 4797–4802.

    Article  PubMed  CAS  Google Scholar 

  70. Schmidt J. G., Christensen L., Nielsen P. E., and Orgel L. E. (1997) Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucleic Acids Res. 25, 4792–4796.

    Article  PubMed  CAS  Google Scholar 

  71. Nelson K. E., Levy M., and Miller S. L. (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc. Natl. Acad. Sci. USA 97, 3868–3871.

    Article  PubMed  CAS  Google Scholar 

  72. Lansdorp P. M., Verwoerd N. P., Van de Rijke F. M., Dragowska V., Little M.-T., Dirks R. W. et al. (1996) Heterogeneity in telomere length of human chromosomes. Human Mol. Gen. 5, 685–691.

    Article  CAS  Google Scholar 

  73. Zijlmans M. J. M., Martens U. M., Poon S. S. S., Raap A. K., Tanke H. J., Ward R. K., and Lansdorp P. M. (1997) Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc. Natl. Acad. Sci. USA 94, 7423–7428.

    Article  PubMed  CAS  Google Scholar 

  74. Mathioudakis G., Storb R., McSweeney P. A., Torok-Storb B., Lansdorp P. M., Brummendorf T. H., et al. (2000) Polyclonal hematopoiesis with variable telomere shortening in human longterm allogeneic marrow graft recipients. Blood 96, 3991–3994.

    PubMed  CAS  Google Scholar 

  75. Chen C., Wu B., Wie T., Egholm M., and Strauss W. M. (2000) Unique chromosome identification and sequence-specific structural analysis with short PNA oligomers. Mamm. Genome 11, 384–391.

    Article  PubMed  CAS  Google Scholar 

  76. Hongmanee P., Stender H., and Rasmussen O. F. (2001) Evaluation of a fluorescence in situ hybridization assay for differentiation between tuberculous and nontuberculous Mycobacterium species in smears of Lowenstein-Jensen and mycobacteria growth indicator tube cultures using peptide nucleic acid probes. J. Clin. Microbiol. 39, 1032–1035.

    Article  PubMed  CAS  Google Scholar 

  77. Drobniewski F. A., More P. G., and Harris G. S. (2000) Differentiation of Mycobacterium tuberculosis complex and nontuberculous mycobacterial liquid cultures by using peptide nucleic acid-fluorescence in situ hybridization probes. J. Clin. Microbiol. 38, 444–447.

    PubMed  CAS  Google Scholar 

  78. Stender H., Mollerup T. A., Lund K., Petersen K. H., Hongmanee P., and Godtfredsen S. E. (1999) Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes. Int. J. Tuberc. Lung Dis. 3, 830–837.

    PubMed  CAS  Google Scholar 

  79. Perry-O’Keefe H., Stender H., Broomer A., Oliveira K., Coull J., and Hyldig-Nielsen J. J. (2001) Filter-based PNA in situ hybridization for rapid detection, identification and enumeration of specific micro-organisms. J. Appl. Microbiol. 90, 180–189.

    Article  CAS  Google Scholar 

  80. Stender H., Oliveira K., Rigby S., Bargoot F., and Coull J. (2001) Rapid detection, identification, and enumeration of Escherichia coli by fluorescence in situ hybridization using an array scanner. J. Microbiol. Methods 45, 31–39.

    Article  PubMed  CAS  Google Scholar 

  81. Stender H., Sage A., Oliveira K., Broomer A. J., Young B., and Coull J. (2001) Combination of ATP-bioluminescence and PNA probes allows rapid total counts and identification of specific microorganisms in mixed populations. J. Microbiol. Methods 46, 69–75.

    Article  PubMed  CAS  Google Scholar 

  82. Stender H., Kurtzman C., Hyldig-Nielsen J. J., Sørensen D., Broomer A., Oliveira K. et al. (2001) Identification of Dekkera bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl. Environ. Microbiol. 67, 938–941.

    Article  PubMed  CAS  Google Scholar 

  83. Worden A. Z., Chisholm S. W., and Binder B. J. (2000) in situ hybridization of Prochlorococcus and Synechococcus (Marine cyanobacteria) spp. with rRNA-targeted peptide nucleic acid probes. Appl. Environ. Microbiol. 66, 284–289.

    Article  PubMed  CAS  Google Scholar 

  84. Ørum H., Nielsen P. E., Egholm M., Berg R. H., Buchardt O., and Stanley C. Single (1993) base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res. 21, 5332–5336.

    Article  PubMed  Google Scholar 

  85. Behn M. and Schuermann M. (1998) Sensitive detection of p53 gene mutations by a “mutant enriched” PCR-SSCP technique. Nucleic Acids Res. 26, 1356–1358.

    Article  PubMed  CAS  Google Scholar 

  86. Murdock D. G., Christacos N. C., and Wallace D. C. (2000) The agerelated accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res. 28, 4350–4355.

    Article  PubMed  CAS  Google Scholar 

  87. Myal Y., Blanchard A., Watson P., Corrin M., Shiu R., and Iwasiow B. (2000) Detection of genetic point mutations by peptide nucleic acid-mediated polymerase chain reaction clamping using paraffinembedded specimens. Anal. Biochem. 285, 169–172.

    Article  PubMed  CAS  Google Scholar 

  88. Von Wintzingerode F., Landt O., Ehrlich A., and Gobel U. B. (2000) Peptide nucleic acid-mediated PCR clamping as a useful supplement in the determination of microbial diversity. Appl. Environ. Microbiol. 66, 549–557.

    Article  PubMed  CAS  Google Scholar 

  89. Behn M., Thiede C., Neubauer A., Pankow W., and Schuermann M. (2000) Facilitated detection of oncogene mutations from exfoliated tissue material by a PNA-mediated ‘enriched PCR’ protocol. J. Pathol. 190, 69–75.

    Article  PubMed  CAS  Google Scholar 

  90. Ortiz E., Estrada G., and Lizardi P. M. (1998) PNA molecular beacons for rapid detection of PCR amplicons. Mol. and Cell. Probes 12(4), 219–226.

    Article  CAS  Google Scholar 

  91. Kuhn H., Demidov V. V., Gildea B. D., Fiandaca M. J., Coull J. C., and Frank-Kamenetskii M. D. (2001) PNA beacons for duplex DNA. Antisense Nucleic Acid Drug Dev. 11, 265–270.

    Article  PubMed  CAS  Google Scholar 

  92. Isacsson J., Cao H., Ohlsson L., Nordgren S., Svanvik N., Westman G., et al. (2000) Rapid and specific detection of PCR products using light-up probes. Mol. Cell. Probes 14, 321–328.

    Article  PubMed  CAS  Google Scholar 

  93. Svanvik N., Westman G., Wang D., and Kubista M. (2000) Lightup probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution. Anal. Biochem. 281, 26–35.

    Article  PubMed  CAS  Google Scholar 

  94. Svanvik N., Nygren J., Westman G., and Kubista M. (2001) Free-probe fluorescence of light-up probes. J. Am. Chem. Soc. 123, 803–809.

    Article  PubMed  CAS  Google Scholar 

  95. Griffin T., Tang W., and Smith L. M. (1997) Genetic analysis by peptide nucleic acid affinity MALDI-TOF mass spectrometry. Nat. Biotechnol. 15, 1368–1370.

    Article  PubMed  CAS  Google Scholar 

  96. Ørum H., Nielsen P. E., Jørgensen M., Larsson C., Stanley C., and Koch T. (1995) Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection. BioTechniques 19, 472–480.

    PubMed  Google Scholar 

  97. Seeger C., Batz H.-G., Ørum H. (1997) PNA-mediated purification of PCR amplifiable human genomic DNA from whole blood. BioTechniques 23, 512–516.

    PubMed  CAS  Google Scholar 

  98. Chandler D. P., Stults J. R., Anderson K. K., Cebula S., Schuck B. L., and Brockman F. J. (2000) Affinity capture and recovery of DNA at femtomolar concentrations with peptide nucleic scid probes. Anal. Biochem. 283, 241–249.

    Article  PubMed  CAS  Google Scholar 

  99. Chandler D. P., Stults J. R., Cebula S., Schuck B. L., Weaver D. W., Anderson K. K., et al. (2000) Affinity purification of DNA and RNA from environmental samples with peptide nucleic acid clamps. Appl. Environ. Microbiol. 66, 3438–3445.

    Article  PubMed  CAS  Google Scholar 

  100. Scarfi S., Giovine M., Gasparini A., et al. (1999) Modified peptide nucleic acids are internalized in mouse macrophages RAW 264.7 and inhibit inducible nitric oxide synthase. FEBS Lett. 451, 264–268.

    Article  PubMed  CAS  Google Scholar 

  101. Good L. and Nielsen P. E. (1998) Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotech. 16, 355–358.

    Article  CAS  Google Scholar 

  102. Villa R., Folini M., Lualdi S., Veronese S. Daidone, and M. G. Zaffaroni N. (2000) Inhibition of telomerase activity by a cell-penetrating peptide nucleic acid construct in human melanoma cells. FEBS Lett. 473, 241–248.

    Article  PubMed  CAS  Google Scholar 

  103. Chinnery P. F., Taylor R. W., Diekert K., Lill R., Turnbull D. M., and Lightowlers R. N. (1999) Peptide nucleic acid delivery to human mitochondria. Gene Ther. 6, 1919–1928.

    Article  PubMed  CAS  Google Scholar 

  104. Boffa I. C., Scarfi S., Mariani M. R., et al. (2000) Dihydro testosterone as a selective cellular/nuclear localization vector for antigene peptide nucleic acid in prostatic carcinoma cells. Cancer Res. 60, 2258–2262.

    PubMed  CAS  Google Scholar 

  105. Muratovska A., Lightowlers R. N., Taylor R. W., et al. (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucl. Acids Res. 29, 1852–1863.

    Article  PubMed  CAS  Google Scholar 

  106. Zhang X., Simmons C. G., and Corey D. R. (2001) Liver cell specific targeting of peptide nucleic acid oligomers. Bioorg. Med. Chem. Lett. 11, 1269–1272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Nielsen, P.E. (2002). PNA Technology. In: Nielsen, P.E. (eds) Peptide Nucleic Acids. Methods in Molecular Biology, vol 208. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-290-2:03

Download citation

  • DOI: https://doi.org/10.1385/1-59259-290-2:03

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-976-6

  • Online ISBN: 978-1-59259-290-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics