Advertisement

Use of In Vitro Organ Cultures of Human Saphenous Vein as a Model for Intimal Proliferation

  • Karen E. Porter
Protocol
  • 435 Downloads
Part of the Methods in Molecular Biology™ book series (MIMB, volume 206)

Abstract

The autologous internal mammary artery and the long saphenous vein are the most frequently used conduits as bypass grafts in the management of occlusive arterial disease in both the coronary and lower limb circulations. However, significant stenosis occurs in over a third of lower limb reconstructions in the first postoperative year (1), and the patency rate for coronary bypass grafts is only 50% after 5 yr (2). The underlying pathological lesion of such stenoses is intimal hyperplasia (IH). IH is characterized by excessive smooth muscle cell migration and proliferation in the intima of the vessel wall, together with an accumulation of extracellular matrix. This in turn results in a significant loss in lumenal area with a subsequent reduced blood flow to the tissues.

Keywords

Organ Culture Saphenous Vein Intimal Hyperplasia Smooth Muscle Cell Proliferation Neointima Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mattos M. K., van Bemmelen P. S., Hodgson K. J., Ramsey D. E., Barkmeier L. D., and Sumner D. S. (1993) Does correction of stenoses identified with colour duplex scanning improve infrainguinal graft patency? J. Vasc. Surg. 17, 54–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Angelini G. D. and Newby A. C. (1989) The future of saphenous vein as a coronary artery bypass conduit. Eur. Heart J. 10, 273–280.PubMedGoogle Scholar
  3. 3.
    Freshney R. I. (1987) Culture of Animal Cells, 2nd ed., Alan R. Liss Inc., New York, pp. 298–305.Google Scholar
  4. 4.
    Strangeways T. S. P. and Fell H. B. (1926) Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro Proc. Royal Soc. London 99, 340–366.CrossRefGoogle Scholar
  5. 5.
    Trowell O. A. (1959) The culture of mature organs in a synthetic medium. Exp. Cell Res. 16, 118–147.PubMedCrossRefGoogle Scholar
  6. 6.
    Pederson D. C. and Bowyer D. E. (1985) Endothelial injury and healing in vitro. Studies using an organ culture system. Am. J. Pathol. 119, 264–272.PubMedGoogle Scholar
  7. 7.
    Koo E. W. Y. and Gotlieb A. I. (1989) Endothelial stimulation of intimal cell proliferation in a porcine aortic organ culture. Am. J. Pathol. 134, 497–503.PubMedGoogle Scholar
  8. 8.
    Koo E. W. Y. and Gotlieb A. I. (1991) Neointimal formation in the porcine aortic organ culture. Lab. Invest. 64, 743–753.PubMedGoogle Scholar
  9. 9.
    Barrett L. A., Mergner, W. J., and Trump B. F. (1979). Long term culture of human aortas. In Vitro 15, 957–966.PubMedCrossRefGoogle Scholar
  10. 10.
    Soyombo A. A., Angelini G. D., Bryan A. J., Jasani B., and Newby A. C. (1990) Intimal proliferation in an organ culture of human saphenous vein. Am. J. Pathol. 137, 1401–1410.PubMedGoogle Scholar
  11. 11.
    Ferrell M., Fuster V., Gold H. K., and Chesebro J. H. (1992) A dilemma for the 1990’. Choosing appropriate experimental models for the prevention of restenosis. Circulation 85, 1630–1631.PubMedGoogle Scholar
  12. 12.
    Clozel M., Breu V., Gray G. A., Kalina B., Loffler B. M., Burri K., et al. (1994) Pharmacological characterisation of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 270, 228–235.PubMedGoogle Scholar
  13. 13.
    Ihara M., Ishikawa K., Fukuroda T., Saeki T., Funabashi K., Fukami T., et al. (1992) In vitro biological profile of a highly potent novel endothelin (ET) antagonist BQ-123 selective for the ETA receptor. J. Cardiovasc. Pharmacol. 20, 511–514.Google Scholar
  14. 14.
    Ishikawa K., Ihara M., Noguchi K., Mase T., Mino N., Saeki T., et al. (1994) Biochemical and pharmacological profile of a potent and selective endothelin Breceptor antagonist, BQ-788. Proc. Natl. Acad. Sci. USA 91, 4892–4896.PubMedCrossRefGoogle Scholar
  15. 15.
    Sayers R. D., Jones L., Varty K., Allen K., Morgan J. D. T., Bell P. R. F., and London N.J.M. (1993) The histopathology of infrainguinal vein graft stenoses. Eur. J. Vasc. Surg. 7, 16–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Miller R. J. (1971) An elastin stain. Med. Lab. Tech. 28, 148–154.Google Scholar
  17. 17.
    Porter K. E., Varty K., Jones L., Bell P. R. F., and London N. J. M. (1996) Human saphenous vein organ culture: A useful model of intimal hyperplasia? Eur. J. Vasc. Endovasc. Surg. 11, 48–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Bobik A., Grooms A., Millar J. A., and Grinpukel S. (1990) Growth factor activity of endothelin on vascular smooth muscle. Am. J. Physiol. 258, C408–C415.PubMedGoogle Scholar
  19. 19.
    Hirata Y., Takagi Y., Fukuda Y., and Marumo F. (1989) Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis 78, 225–228.PubMedCrossRefGoogle Scholar
  20. 20.
    Masood I., Porter K. E., and London N. J. M. (1997) Endothelin-1 is a mediator of intimal hyperplasia in an organ culture of human saphenous vein. Br. J. Surg. 84, 499–503.PubMedCrossRefGoogle Scholar
  21. 21.
    Arai H., Hori S., Aramori I., Ohkubo H., and Nakanishi S. (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348, 730–732.PubMedCrossRefGoogle Scholar
  22. 22.
    Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., and Masaki T. (1990) Cloning of a cDNA encoding a nonisopeptide-selective subtype of the endothelin receptor. Nature 348, 732–735.PubMedCrossRefGoogle Scholar
  23. 23.
    Weber C., Schmitt R., Birnboeck H., Hopfgartner G., Vanmarle S. P., Peeters P. A. M., et al. (1996) Pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist bosentan in healthy human subjects. Clin. Pharmacol. Ther. 60, 124–137.PubMedCrossRefGoogle Scholar
  24. 24.
    Douglas S. A., Vickery-Clark L. M., Louden C., Elliot J. D., and Ohlstein E. H. (1995) Endothelin receptor subtypes in the pathogenesis of angioplasty-induced neointima formation in the rat-A comparison of selective ET(A receptor antagonism and dual ET(A)/ET(B) receptor antagonism using BQ123 and SB204670. J. Cardiovasc. Pharmacol. 26, S186–S189.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Karen E. Porter
    • 1
  1. 1.Integrated Molecular Cardiology Group, Institute for Cardiovascular ResearchUniversity of LeedsLeedsUK

Personalised recommendations