Skip to main content

Approaches to Library Design for Combinatorial Chemistry

  • Protocol
Combinatorial Library

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 201))

  • 501 Accesses

Abstract

With the advent of high-throughput technologies in drug discovery, combinatorial chemistry has superseded natural products as the prime source of compounds to be tested in biological screening (1). The reason being that compared with classical synthesis, high-throughput chemistry can produce a much larger number of compounds within a much shorter period of time. However, owing to the combinatorial nature of the problem and the large number of reagents available, many more compounds are theoretically accessible via a given synthetic route than it is actually feasible to synthesize. Therefore, library design techniques are employed to identify those reagents that yield a library enriched with the desired properties. Early on, most applications of these techniques concentrated on designing very diverse libraries, with the idea that these libraries would be tested against a variety of biological assays. The ideal library in this case would be with no voids, no redundancy, and an even distribution with regard to a given chemical space. Nowadays, it is equally common to design targeted libraries to have a maximal activity in a selected assay. Here, all compounds would be designed to be similar to given hits or leads. Other applications of library design techniques include the computational evaluation of templates, i.e., prioritization of candidate libraries for synthesis and screening (see Note 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibbon J. A., Taylor E. W., and Braeckman R. A. (1998) in Combinatorial chemistry and molecular diversity in drug discovery, (Gordon E. M. and Kerwin J. F., eds.), Wiley-Liss New York, NY, pp. 453–474.

    Google Scholar 

  2. Martin E. J. and Critchlow R. E. (1999) Beyond mere diversity: Tailoring combinatorial libraries for drug discovery. J. Combinat. Chem. 1, 32–45.

    Article  CAS  Google Scholar 

  3. Gorse D. and Lahana R. (2000) Functional diversity of compound libraries. Curr. Opin. Chem. Biol. 4, 287–294.

    Article  PubMed  CAS  Google Scholar 

  4. Walters W.P, Stahl M. T., and Murcko M. A. (1998) Virtual screening—an overview. Drug Discov. Today 3, 160–178.

    Article  CAS  Google Scholar 

  5. Leach A. R. and Hann M. M. (2000) The in silico world of virtual libraries. Drug Discov. Today 5, 326–336.

    Article  PubMed  CAS  Google Scholar 

  6. Good A. C. and Lewis R. A. (1997) New methodology for profiling combinatorial libraries and screening sets: cleaning up the design process with HARPick. J. Med. Chem. 40, 3926–3936.

    Article  PubMed  CAS  Google Scholar 

  7. Van Drie J. H. and Lajiness M. S. (1998) Approaches to virtual library design. Drug Discov. Today 3, 274–283.

    Article  Google Scholar 

  8. Linusson A., Gottfries J., Lindgren F., and Wold S. (2000) Statistical molecular design of building blocks for combinatorial chemistry. J. Med. Chem. 43,1320–1328.

    Article  PubMed  CAS  Google Scholar 

  9. Gillet V. J., Willet P., and Bradshaw J. (1997) The effectiveness of reactant pools for generation of structurally diverse combinatorial libraries. J. Chem. Inf. Comput. Sci. 37, 731–740.

    Article  CAS  Google Scholar 

  10. Jamois E. A., Hassan M., and Waldman M. (2000) Evaluation of reagent-based and product-based strategies in the design of combinatorial library subsets. J. Chem. Inf. Comput. Sci. 40, 63–70.

    Article  PubMed  CAS  Google Scholar 

  11. Gillet V. J., Willet P., Bradshaw J., and Green D. V. S. (1999) Selecting combinatorial libraries to optimize diversity and physical properties. J. Chem. Inf. Comput. Sci. 39, 169–177.

    Article  CAS  Google Scholar 

  12. Pearlman R. S. and Smith K. M. (1998) Novel software tools for chemical diversity. Perspect. Drug Discov. Design. 9, 339–353.

    Article  Google Scholar 

  13. Pearlman R. S. and Smith K. M. (1999) Metric validation and the receptorrelevant subspace concept. J. Chem. Inf. Comput. Sci. 39, 28–35.

    Article  CAS  Google Scholar 

  14. Cramer R. D., Patterson D. E., Clark R. D., Soltanshahi F., and Lawless M. S. (1998) Virtual compound libraries: A new approach to decision making in molecular discovery research. J. Chem. Inf. Comput. Sci., 38, 1010–1023.

    Article  CAS  Google Scholar 

  15. Rishton G. M. (1997) Reactive compounds and in vitro false positives in HTS. Drug Discov. Today 2, 382–384.

    Article  CAS  Google Scholar 

  16. Lewis R. A., Mason J. S., and McLay I. M. (1997) Similarity measures for rational set selection and analysis of compbinatorial libraries: the diverse property-derived (DPD) approach. J. Chem. Inf. Comput. Sci. 37, 599–614.

    Article  PubMed  CAS  Google Scholar 

  17. Hann M., Hudson B., Lewell X., Lifely R., Miller L., and Ramsden N. (1999)Strategic pooling of compounds for high-throughput screening. J. Chem. Inf. Comput. Sci. 39, 897–902.

    Article  PubMed  CAS  Google Scholar 

  18. Clark D. E. and Pickett S. D. (2000) Computational methods for the prediction of “drug-likeness.” Drug Discov. Today 5, 49–58.

    Article  PubMed  CAS  Google Scholar 

  19. Lipinski C. A., Lombardo F., Dominy B. W., and Feeney P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 23, 3–25.

    Article  CAS  Google Scholar 

  20. Patterson D. E., Cramer R. D., Ferguson A. M., Clark R. D., and Weinberger L. E. (1996) Neighborhood behavior: A useful concept for validation of “molecular diversity” descriptors. J. Med. Chem. 39, 3049–3059.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson M. A. and Maggiora G. M. (1990) Concepts and applications of molecular similarity, Wiley New York.

    Google Scholar 

  22. Mason J. S., Morize I., Menard P. R., Cheney D. L., Hulme C., and Labaudiniere R. F. (1999) New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing priviledged substructures. J. Med. Chem. 42, 3251–3264.

    Article  PubMed  CAS  Google Scholar 

  23. Picket S. D., Mason J. S., and McLay I. M. (1996) Diversity profiling and design using 3D pharmacophores: pharmacophore-derived queries (PDQ). J. Chem. Inf. Comput. Sci. 36, 1214–1223.

    Article  Google Scholar 

  24. Drewry D. H. and Young S. S. (1999) Approaches to the design of combinatorial libraries. Chemometr. Intell. Lab. Syst. 48, 1–20.

    Article  CAS  Google Scholar 

  25. Gorse D., Rees A., Kaczorek M., and Lahana R. (1999) Molecular diversity and its analysis. Drug Discov. Today 4, 257–264.

    Article  PubMed  CAS  Google Scholar 

  26. Mason J. S. and Hermsmeier M. A. (1999) Diversity assessment. Curr. Opin. Chem. Biol. 3, 342–349.

    Article  PubMed  CAS  Google Scholar 

  27. Brown R. D. and Martin Y. C. (1996) Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J. Chem. Inf. Comput. Sci. 36, 572–584

    Article  CAS  Google Scholar 

  28. Matter H. (1997) Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors. J. Med. Chem. 40, 1219–1229.

    Article  PubMed  CAS  Google Scholar 

  29. Cramer R. D., Clark R. D., Patterson D. E., and Ferguson A. M. (1996) Bioisosterism as a molecular diversity descriptor: steric fields of single topomeric conformers. J. Med. Chem. 39, 3060–3069.

    Article  PubMed  CAS  Google Scholar 

  30. Andrews K. M. and Cramer R. D. (2000) Toward general methods of targeted library design: topomer shape similarity searching with diverse structures as queries. J. Med. Chem. 43, 1723–1740.

    Article  PubMed  CAS  Google Scholar 

  31. Cramer R. D., Poss M. A., Hermsmeier M. A., Caulfield T. J., Kowala M. C., and Valentine M. T. (1999) Prospective identification of biologically active structures by topomer shape similarity searching. J. Med. Chem. 42, 3919–3933.

    Article  PubMed  Google Scholar 

  32. Clark R. D., Patterson D. E., Soltanshahi F., Blake J. F., and Matthew J. B. (2000) Visualizing substructural fingerprints. J. Mol. Graphics Mod. 18, 404–411.

    Article  CAS  Google Scholar 

  33. Clark R. D. (1997) OptiSim: An extended dissimilarity selection method for finding diverse representative subsets. J. Chem. Inf. Comput. Sci. 37, 1181–1188.

    Article  CAS  Google Scholar 

  34. Ash S., Cline M. A., Homer R. W., Hurst T., and Smith G. B. (1997) SYBYL line notation (SLN): a versatile language for chemical structure representation. J. Chem. Inf. Comput. Sci. 37, 71–79.

    Article  CAS  Google Scholar 

  35. Weininger D. J. (1988) SMILES, a chemical language and information system.1. Introduction of methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28,31–36.

    Article  CAS  Google Scholar 

  36. Agrafiotis K. and Lobanov V. S. (2000) Ultrafast algorithm for designing focused combinatorial arrays. J. Chem. Inf. Comput. Sci. 40, 1030–1038.

    Article  PubMed  CAS  Google Scholar 

  37. Dalby A., Nourse J. G., Hounshell W. D., et al. (1992) Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci. 32, 244–255.

    Article  CAS  Google Scholar 

  38. Willett P. (1986) Similarity and clustering in chemical information systems,Research Studies Press Letchwork, U. K.

    Google Scholar 

  39. Shi S., Peng Z., Kostrowicki J., Paderes G., and Kuki A. (2000) Efficient combinatorial filtering for desired molecular properties of reaction products. J. Mol.Graphics. Mod. 18, 478–496.

    Article  CAS  Google Scholar 

  40. Holliday J. D. and Willett P. (1996) Definitions of “dissimilarity” for dissimilarity-based compound selection. J. Biomol. Screening 1, 145–151.

    Article  CAS  Google Scholar 

  41. Willett P. and Winterman V. (1986) A comparison of some measures for the determination of intermolecular structural similarity. Quant. Struct. Activ. Relat. 5, 18–25.

    Article  CAS  Google Scholar 

  42. Kubinyi H. (ed.) (1993) 3D QSAR in drug design, ESCOM, Leiden The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Güssregen, S., Wendt, B., Warne, M. (2002). Approaches to Library Design for Combinatorial Chemistry. In: English, L.B. (eds) Combinatorial Library. Methods in Molecular Biology™, vol 201. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-285-6:277

Download citation

  • DOI: https://doi.org/10.1385/1-59259-285-6:277

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-980-3

  • Online ISBN: 978-1-59259-285-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics