Skip to main content

Resolving Racemic Mixtures Using Parallel Combinatorial Libraries

  • Protocol
Combinatorial Library

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 201))

  • 503 Accesses

Abstract

As human enzymes and cell surface receptors possess handedness, the enantiomers of a racemic pair of compounds may be absorbed, activated, and degraded in different manners. In some instances, two enantiomers of a racemic drug may have different or even opposite pharmacological activities. In order to acknowledge these differing effects, the biological activity of each enantiomer often needs to be studied separately. This and other factors within the pharmaceutical industry have contributed significantly to the need for enantiomerically pure compounds (1). Consequently, the need to analyze and separate racemic compounds efficiently is of significant importance in pharmaceutical research. Among the asymmetric technologies developed, chromatographic methods are widely used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stinson S. C. (1995) Chiral Drugs. Chem. Eng. News 73(41), Oct. 9, 44–74.

    Article  Google Scholar 

  2. Pirkle W. H. and Welch C. J. (1994) Chromatographic and 1H NMR support for a proposed chiral recognition model. J. Chromatogr. A 683, 347–353.

    Article  CAS  Google Scholar 

  3. Armstrong D. W., Ward T. J., Armstrong R. D., and Beesley T. E. (1986) Separation of drug stereoisomers by the formation of cyclodextrin inclusion complexes. Science 232, 1132–1135.

    Article  PubMed  CAS  Google Scholar 

  4. Berthod A., Liu Y., Bagwill C., and Armstrong D. W. (1996) Facile LC enantioresolution of native amino acids and peptides using a teicoplanin chiral stationary phase J. Chromatogr. A 731, 123–137.

    Article  PubMed  CAS  Google Scholar 

  5. Yashima E., Yamamoto C., and Okamoto Y. (1996) NMR studies of chiral discrimination relevant to the liquid chromatographic enantioseparation by a cellulose phenylcarbamate derivative. J. Am. Chem. Soc. 118, 4036–4048.

    Article  CAS  Google Scholar 

  6. Oguni K., Oda H., and Ichida A. (1995) Development of chiral stationary phases consisting of polysaccharide derivatives. J. Chromatogr. A, 694, 91–100.

    Article  CAS  Google Scholar 

  7. Blaschke G. (1988) Substituted polyacrylamides as chiral phases for the resolution of drugs, in Chromatographic Chiral Separations (Zief M. and Crane L. J., eds.), Marcel Dekker, Inc. New York, pp. 179–198.

    Google Scholar 

  8. Wang Y. and aiLi T. (1999) Screening of a parallel combinatorial library for selectors for chiral chromatography. Anal. Chem. 71, 4178–4182.

    Article  PubMed  CAS  Google Scholar 

  9. Wang Y., Bluhm L., and Li T. (2000) Identification of chiral selectors from a 200-member parallel combinatorial library. Anal. Chem. 72, 5459–5465.

    Article  PubMed  CAS  Google Scholar 

  10. Pirkle W. H. (1997) On the minimum requirements for chiral recognition. Chirality 9, 103–104.

    Article  CAS  Google Scholar 

  11. Wainer I. W. and Caldwell J. (1997) The 1996 Chirality debate. Chirality 9, 95–96.

    Article  CAS  Google Scholar 

  12. Poole C. F. and Poole S. K. (1991) Chromatography today. Elsevier New York, pp. 350–353.

    Google Scholar 

  13. Pirkle W. H. and Welch C. J. (1991) A convenient void volume marker for several chiral HPLC columns. J. Liq. Chromatogr. 14, 1–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Li, T., Wang, Y., Bluhm, L.H. (2002). Resolving Racemic Mixtures Using Parallel Combinatorial Libraries. In: English, L.B. (eds) Combinatorial Library. Methods in Molecular Biology™, vol 201. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-285-6:203

Download citation

  • DOI: https://doi.org/10.1385/1-59259-285-6:203

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-980-3

  • Online ISBN: 978-1-59259-285-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics