Skip to main content

Characterization of Specialized mtDNA Glycosylases

  • Protocol
Mitochondrial DNA

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 197))

Abstract

Mitochondria are cytoplasmic organelles that generate cellular energy in the form of ATP by the process of oxidative phosphorylation. Mitochondria contain multiple copies of a 16.5-kb circular genome. Mitochondrial DNA (mtDNA) encodes a subset of 13 structural, 22 transfer (tRNA), and 2 ribosomal (rRNA) genes. These few polypeptides encoded by mtDNA are essential components of oxidative phosphorylation. The other proteins involved in the metabolism and processing of the mtDNA, including mtDNA regulatory factors, are encoded in the nuclear genome. Transcription of these genes takes place in the nucleus and translation in the cytoplasm is then followed by selective transport to the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner, J. R., Hu, C. C., and Ames, B. N. (1992) Endogenous oxidative damage of deoxycytidine in DNA. Proc. Natl. Acad. Sci. USA 89 (8), 3380–3384.

    Article  PubMed  CAS  Google Scholar 

  2. Richter, C., Park, J. W., and Ames, B. N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85(17), 6465–6467.

    Article  PubMed  CAS  Google Scholar 

  3. Anson, R. M., Senturker, S., Dizdaroglu, M., and Bohr, V. A. (1999) Measurement of oxidatively induced base lesions in liver from Wistar rats of different ages. Free Radical Biol. Med. 27(3-4), 456–462.

    Article  CAS  Google Scholar 

  4. Suter, M. and Richter, C. (1999) Fragmented mitochondrial DNA is the predomi-nant carrier of oxidized DNA bases. Biochemistry 38(1), 459–464.

    Article  PubMed  CAS  Google Scholar 

  5. Ames, B. N. (1989) Endogenous DNA damage as related to cancer and aging. Mutat. Res. 214(1), 41–46.

    PubMed  CAS  Google Scholar 

  6. Dizdaroglu, M., Olinski, R., Doroshow, J. H., and Akman, S. A. (1993) Modification of DNA bases in chromatin of intact target human cells by activated human polymorphonuclear leukocytes. Cancer Res. 53(6), 1269–1272.

    PubMed  CAS  Google Scholar 

  7. Wallace, D. C. (1999) Mitochondrial diseases in man and mouse. Science 283(5407), 1482–1488.

    Article  PubMed  CAS  Google Scholar 

  8. Fliss, M. S., Usadel, H., Caballero, O. L., Wu, L., Buta, M. R., Eleff, S. M., et al. (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287(5460), 2017–2019.

    Article  PubMed  CAS  Google Scholar 

  9. Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J. K., Markowitz, S. D., et al. (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet. 20(3), 291–293.

    Article  PubMed  CAS  Google Scholar 

  10. Friedberg, E. C., Walker, G. C., and Siede, W. (1995) DNA Repair and Mutagenesis, American Society for Microbiology, Washington, DC.

    Google Scholar 

  11. Wood, R. D. (1997) Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272(38), 23,465–23,468.

    Article  PubMed  CAS  Google Scholar 

  12. Clayton, D. A., Doda, J. N., and Friedberg, E. C. (1974) The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 71(7), 2777–2781.

    Article  PubMed  CAS  Google Scholar 

  13. Croteau, D. L. and Bohr, V. A. (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem. 272(41), 25,409–25,412.

    Article  PubMed  CAS  Google Scholar 

  14. Bogenhagen, D. F. (1999) Repair of mtDNA in vertebrates. Am. J. Hum. Genet. 64(5), 1276–1281.

    Article  PubMed  CAS  Google Scholar 

  15. Krokan, H. E., Standal, R., and Slupphaug, G. (1997) DNA glycosylases in the base excision repair of DNA. Biochem. J. 325, 1–16.

    PubMed  CAS  Google Scholar 

  16. Sun, B., Latham, K. A., Dodson, M. L., and Lloyd, R. S. (1995) Studies on the catalytic mechanism of five DNA glycosylases. Probing for enzyme-DNA imino intermediates. J. Biol. Chem. 270(33), 19,501–19,508.

    Article  PubMed  CAS  Google Scholar 

  17. Slupphaug, G., Markussen, F. H., Olsen, L. C., Aasland, R., Aarsaether, N., Bakke, O., Krokan, H. E., et al. (1993) Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucleic Acids Res. 21(11), 2579–2584.

    Article  PubMed  CAS  Google Scholar 

  18. Anderson, C. T. and Friedberg, E. C. (1980) The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res. 8(4), 875–888.

    PubMed  CAS  Google Scholar 

  19. Caradonna, S., Ladner, R., Hansbury, M., Kosciuk, M., Lynch, F., and Muller, S. (1996) Affinity purification and comparative analysis of two distinct human uracil-DNA glycosylases. Exp. Cell. Res. 222(2), 345–359.

    Article  PubMed  CAS  Google Scholar 

  20. Nilsen, H., Otterlei, M., Haug, T., Solum, K., Nagelhus, T. A., Skorpen, F., et al. (1997) Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 25(4), 750–755.

    Article  PubMed  CAS  Google Scholar 

  21. Nishioka, K., Ohtsubo, T., Oda, H., Fujiwara, T., Kang, D., Sugimachi, K., et al. (1999) Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell 10(5), 1637–1652.

    PubMed  CAS  Google Scholar 

  22. Souza-Pinto, N., Eide, L., Hogue, B. A., et al. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the ogg1 gene and 8-oxoguanine accumulates in the mitochondrial DNA of ogg1 defective mice. Cancer Res., Adv. In Brief, 61, 5378–5381.

    Google Scholar 

  23. Takao, M., Aburatani, H., Kobayashi, K., and Yasui, A. (1998) Mitochondrial targeting of human DNA glycosylases for repair of oxidative DNA damage. Nucleic Acids Res. 26(12), 2917–2922.

    Article  PubMed  CAS  Google Scholar 

  24. Stierum, R. H., Croteau, D. L., and Bohr, V. A. (1999) Purification and characterization of a mitochondrial thymine glycol endonuclease from rat liver. J. Biol. Chem. 274(11), 7128–7136.

    Article  PubMed  CAS  Google Scholar 

  25. Driggers, W. J., Grishko, V. I., LeDoux, S. P., and Wilson, G. L. (1996) Defective repair of oxidative damage in the mitochondrial DNA of a xeroderma pigmentosum group A cell line. Cancer Res. 56(6), 1262–1266.

    PubMed  CAS  Google Scholar 

  26. Taffe, B. G., Larminat, F., Laval, J., Croteau, D. L., Anson, R. M., and Bohr, V. A. (1996) Gene-specific nuclear and mitochondrial repair of formamidopyrimidine DNA glycosylase-sensitive sites in Chinese hamster ovary cells. Mutat. Res. 364(3), 183–192.

    PubMed  CAS  Google Scholar 

  27. Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C. (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40(2), 359–369.

    Article  PubMed  CAS  Google Scholar 

  28. Anson, R. M. and Bohr, V. A. (1999) Gene-specific and mitochondrial repair of oxidative DNA damage, in DNA Repair Protocols (Henderson, D. S., ed.), Humana, Totowa, NJ, Vol. 113, pp. 257–279.

    Chapter  Google Scholar 

  29. Driggers, W. J., LeDoux, S. P., and Wilson, G. L. (1993) Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J. Biol. Chem. 268(29), 22,042–22,045.

    PubMed  CAS  Google Scholar 

  30. Pettepher, C. C., LeDoux, S. P., Bohr, V. A., and Wilson, G. L. (1991) Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J. Biol. Chem. 266(5), 3113–3117.

    PubMed  CAS  Google Scholar 

  31. Tomkinson, A. E., Bonk, R. T., and Linn, S. (1988) Mitochondrial endonuclease activities specific for apurinic/apyrimidinic sites in DNA from mouse cells. J. Biol. Chem. 263(25), 12,532–12,537.

    PubMed  CAS  Google Scholar 

  32. Yakes, E M. and Van Houten, B. (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94(2), 514–519.

    Article  PubMed  CAS  Google Scholar 

  33. Ryoji, M., Katayama, H., Fusamae, H., Matsuda, A., Sakai, F., and Utano, H. (1996) Repair of DNA damage in a mitochondrial lysate of Xenopus laevis oocytes. Nucleic Acids Res. 24(20), 4057–4062.

    Article  PubMed  CAS  Google Scholar 

  34. Kang, D., Nishida, J., Iyama, A., Nakabeppu, Y., Furuichi, M., Fujiwara, T., et al. (1995) Intracellular localization of 8-oxo-dGTPase in human cells, with special reference to the role of the enzyme in mitochondria. J. Biol. Chem. 270(24), 14,659–14,665.

    Article  PubMed  CAS  Google Scholar 

  35. Dianov, G., Price, A., and Lindahl, T. (1992) Generation of single-nucleotide repair patches following excision of uracil residues from DNA. Mol. Cell. Biol. 12(4), 1605–1612.

    PubMed  CAS  Google Scholar 

  36. Stierum, R. H., Dianov, G. L., and Bohr, V. A. (1999) Single-nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts. Nucleic Acids Res. 27(18), 3712–3719.

    Article  PubMed  CAS  Google Scholar 

  37. Cummings, O. W., King, T. C., Holden, J. A., and Low, R. L. (1987) Purification and characterization of the potent endonuclease in extracts of bovine heart mitochondria. J. Biol. Chem. 262(5), 2005–2015.

    PubMed  CAS  Google Scholar 

  38. Gerschenson, M., Houmiel, K. L., and Low, R. L. (1995) Endonuclease G from mammalian nuclei is identical to the major endonuclease of mitochondria. Nucleic Acids Res. 23(1), 88–97.

    Article  PubMed  CAS  Google Scholar 

  39. Chen, D., Lan, J., Pei, W., and Chen, J. (2000) Detection of DNA base-excision repair activity for oxidative lesions in adult rat brain mitochondria. J. Neurosci. Res. 61(2), 225–236.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Nyaga, S.G., Bohr, V.A. (2002). Characterization of Specialized mtDNA Glycosylases. In: Copeland, W.C. (eds) Mitochondrial DNA. Methods in Molecular Biology™, vol 197. Humana Press. https://doi.org/10.1385/1-59259-284-8:227

Download citation

  • DOI: https://doi.org/10.1385/1-59259-284-8:227

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-972-8

  • Online ISBN: 978-1-59259-284-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics