Measuring Oxidative mtDNA Damage and Repair Using Quantitative PCR

  • Janine H. Santos
  • Bhaskar S. Mandavilli
  • Bennett Van Houten
Part of the Methods in Molecular Biology™ book series (MIMB, volume 197)


The human mitochondrial genome was completely sequenced in 1981 by Anderson and co-workers (1) and consists of a closed circular supercoiled DNA molecule of 16,569 base pairs. Mammalian cells characteristically contain a few hundred to several thousand mitochondria, each with 2-10 copies of the genome. The mitochondrial genome encodes 13 polypeptides, 22 transfer RNAs (tRNAs), and 2 rRNA. The 13 polypeptides encoded by the mitochondrial DNA (mtDNA) are essential subunits of the electron transport chain (ETC) and ATP synthase; cells lacking mtDNA are completely dependent on glycolysis for survival (2).


Mitochondrial Genome Quantitative Polymerase Chain Reaction Quantitative Polymerase Chain Reaction Assay Human Mitochondrial Genome Base Excision Repair System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, S., Bankier, A. T., Barrell, B. G., deBruijn, M. H. L., Coulsen, A. R., Drouin, J., et al. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457–465.PubMedCrossRefGoogle Scholar
  2. 2.
    Desjardins, P., deMuys, J. M., and Morais, R. (1986) An established avian fibroblast cell line without mitochondrial DNA. Somatic Cell Mol. Genet. 12, 133–139.CrossRefGoogle Scholar
  3. 3.
    Boveris, A., Oshino, N., and Chance, B. (1972) The cellular production of hydrogen peroxide. Biochem. J. 128, 617–630.PubMedGoogle Scholar
  4. 4.
    Turrens, J. F. and Boveris, A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421–427.PubMedGoogle Scholar
  5. 5.
    Wei, Y. H., Scholes, C. P., and King, T. E. (1981) Ubisemiquinone radicals from the cytochrome b-c1 complex of mitochondrial electron transport chain: demonstration of QP-S radical formation. Biochem. Biophys. Res. Commun. 99(4), 1411–1419.PubMedCrossRefGoogle Scholar
  6. 6.
    Sawyer, D. E. and Van Houten, B. (1999) Repair of DNA damage in mitochondria. Mutat. Res. 434, 161–176.PubMedGoogle Scholar
  7. 7.
    Richter, C., Park, J. W., and Ames, B. N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85, 6465–6467.PubMedCrossRefGoogle Scholar
  8. 8.
    Helbock, H. J., Beckman, K. B., and Ames, B. N. (1999) 8-Hydroxydeoxyguano-sine and 8-hydroxyguanine as biomarkers of oxidative DNA damage. Methods Enzymol. 300, 156–166.PubMedCrossRefGoogle Scholar
  9. 9.
    Helbock, H. J., Beckman, K. B., Shigenaga, M. K., Walter, P. B., Woodall, A. A., Yeo, H. C., et al. (1998) DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc. Natl. Acad. Sci. USA 95(1), 288–293.PubMedCrossRefGoogle Scholar
  10. 10.
    Wallace, D. C. (1992) Mitochondrial DNA mutations and neuromuscular diseases. Trends Genet. 5, 9–13.CrossRefGoogle Scholar
  11. 11.
    Fliss, M. S., Usadel, H., Caballero, O. L., Wu, L., Buta, M. R., Eleff, S. M., et al. (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287(5460), 2017–2019.PubMedCrossRefGoogle Scholar
  12. 12.
    Cortopassi, G. A., Shibata, D., Soong, N. W., and Arnheim, A. (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl. Acad. Sci. USA 89, 7370–7374.PubMedCrossRefGoogle Scholar
  13. 13.
    Polyak, K., Li, Y., Zhu, H., Lengauer, C., Wilson, J. K., Markowitz, S. D., et al. (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nature Genet. 20 (3), 291–293.PubMedCrossRefGoogle Scholar
  14. 14.
    Clayton, D. A., Doda, J. N., and Freidberg, E. C. (1974) The absence of pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 71, 2777–2781.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Houten, B. and Friedberg, E. C. (1999) Mitochondrial DNA damage and repair. Mutat. Res. 434, 133–254 (special issue).Google Scholar
  16. 16.
    Croteau, D. L., Stierum, R. H., and Bohr, V. A. (1999) Mitochondrial DNA repair pathways. Mutat. Res. 434, 137–148.PubMedGoogle Scholar
  17. 17.
    LeDoux, S. P., Driggers, W. J., Hollensworht, B. S., and Wilson, G. L. (1999) Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat. Res. 434, 149–159.PubMedGoogle Scholar
  18. 18.
    Pettepher, C. C., LeDoux, S. P., Bohr, V. A., and Wilson, G. L. (1991) Repair of alkali-labile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J. Biol. Chem. 266, 3113–3117.PubMedGoogle Scholar
  19. 19.
    Driggers, W. J., LeDoux, S. P., and Wilson, G. L. (1993) Repair of oxidative damage within the mitochondrial DNA of RINr 38 cells. J. Biol. Chem. 268, 22,042–22,045.PubMedGoogle Scholar
  20. 20.
    Kalinowski, D., Illenye, S., and Van Houten, B. (1992) Analysis of DNA damage and repair in murine leukemia L1210 cells using a quantitative polymerase chain reaction assay. Nucleic Acids Res. 20, 3485–3494.PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng, S., Chen, Y., Monforte, J. A., Higuchi, R., and Van Houten, B. (1995) Template integrity is essential for PCR amplification of 20-to 30-kb sequences from genomic DNA. PCR Methods Applic. 4, 294–298.Google Scholar
  22. 22.
    Yakes, F. M., Chen, Y., and Van Houten, B. (1996) PCR-based assays for the detection and quantitation of DNA damage and repair, in Technologies for Detecittion of DNA Damage and Mutations (Pfeifer, G. P.,ed.), Plenum, New York, pp. 171–184.Google Scholar
  23. 23.
    Ayala-Torres, S., Chen, Y., Svoboda, T., Rosenblatt, J., and Van Houten, B. (2000) Analysis of gene-specific DNA damage and repair using quantitative PCR, in Methods. A Companion to Methods in Enzymology (Doetsch, P. W.,ed.), Academic, New York, 22, 135–147.Google Scholar
  24. 23a.
    Mewes, H. W., Hani, J., Pfeiffer, F., and Frishman, D. (1998) MIPS: a database for protein sequences and complete genomes. Nucleic Acids Res. 26, 33–37.PubMedCrossRefGoogle Scholar
  25. 24.
    Yakes, F. M. and Van Houten, B. (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94, 514–519.PubMedCrossRefGoogle Scholar
  26. 25.
    Salazar, J. J. and Van Houten, B. (1997) Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator for hydrogen peroxide in human fibroblasts. Mutat. Res. 385(2), 139–149.PubMedGoogle Scholar
  27. 26.
    Ballinger, S. W., Van Houten, B., Coklin, C. A., Jin, A., and Godley, B. (1999) Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp. Eye Res. 68(6), 765–772.PubMedCrossRefGoogle Scholar
  28. 27.
    Deng, G., Su, J. H., Ivins, K. J., Van Houten, B.,and Cottman, C. (1999) Bcl-2 facilitates recovery from DNA damage after oxidative stress. Exp. Neurol. 159, 309–318.PubMedCrossRefGoogle Scholar
  29. 28.
    Ballinger, S. W., Patterson, C., Yan, C. N., Doan, R., Burow, D. L., Young, C. G., et al. (2000) Circ. Res. 86(9), 960–966.PubMedGoogle Scholar
  30. 29.
    Mandavilli, B. S., Syed, F. A., and Van Houten, B. (2000) DNA damage in brain mitochondria caused by aging and MPTP treatment. Brain Res. 885(1), 45–52.PubMedCrossRefGoogle Scholar
  31. 30.
    Singer, V. L., Jones, L. J., Yue, S. T., and Haugland, R. P. (1997) Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 249(2), 228–238.PubMedCrossRefGoogle Scholar
  32. 31.
    Van Houten, B., Cheng, S., and Chen, Y. (2000) Measuring DNA damage and repair in human genes using quantitative amplification of long targets from nanogram quantities of DNA. Mutat. Res. 460(2), 81–94.PubMedGoogle Scholar
  33. 32.
    Chandrasekhar, D. and Van Houten, B. (1994) High resolution mapping of UV-induced photoproducts in the E. coli lacI gene: inefficient repair in the nontranscribed strand correlates with high mutation frequency. J. Mol. Biol. 238, 319–322.PubMedCrossRefGoogle Scholar
  34. 33.
    Chen, K. H., Srivastava, D. K., Yakes, F. M., Singhal, R. K., Rawson, T. Y., Sobol, R. W., et al. (1998) Up-regulation of base excision repair correlates with enhanced protection against a DNA damaging agent in mouse cell lines. Nucleic Acid Res. 26(8), 2001–2007.PubMedCrossRefGoogle Scholar
  35. 34.
    Horton, J. K., Roy, G., Piper, J. T., Van Houten, B., Awashi, Y. C., Mitra, S., et al. (1999) Characterization of chlorambucil-resistant human ovarian carcinoma cell line overexpressing glutathione s-transferase μ. Biochem. Pharmacol. 58(4), 693–702.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Janine H. Santos
    • 1
  • Bhaskar S. Mandavilli
    • 1
  • Bennett Van Houten
    • 1
  1. 1.Laboratory of Molecular Genetics, National Institute of Environmental Health SciencesNational Institutes of Health

Personalised recommendations