Reproducible Quantitative PCR of Mitochondrial and Nuclear DNA Copy Number Using the LightCycler™

  • Alice Wong
  • Gino Cortopassi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 197)

Abstract

Recent developments in PCR fluorimetry have allowed for quick quantification

of target molecules. Before the invention of fluorimetric quantitative PCR, researchers who wanted to quantify the amount of a gene in a sample did so painstakingly by limiting dilution, competitive polymerase chain reaction (PCR), or other methods, including high-performance liquid chromatography (HPLC), solid phase assays, dot blots, or immunoassay (1).

Keywords

Polymerase Chain Reaction Polymerase Chain Reaction Product Mitochondrial Gene Quantitative Polymerase Chain Reaction Polymerase Chain Reaction Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Reischl, U. and Kochanowski, B. (1995) Quantitative PCR. A survey of the present technology. Mol. Biotechnol. 3, 55–71. 137PubMedCrossRefGoogle Scholar
  2. 2.
    Wittwer, C. T., Herrmann, M. G., Moss, A. A., et al. (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22, 130–131, 134-138.PubMedGoogle Scholar
  3. 3.
    Wittwer, C. T., Ririe, K. M., Andrew, R. V., et al. (1997) The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22, 176–181.PubMedGoogle Scholar
  4. 4.
    Idaho Technology, Inc. (1998) LightCycler User’s Guide. Idaho Technology, Idaho Falls, ID.Google Scholar
  5. 5.
    Tsuzuki, T., Nomiyama, H., Setoyama, C., et al. (1983) Presence of mitochondrial-DNA-like sequences in the human nuclear DNA. Gene 25, 223–229.PubMedCrossRefGoogle Scholar
  6. 6.
    Parfait, B., Rustin, P., Munnich, A., et al. (1998) Co-amplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations. Biochem. Biophys. Res. Commun. 247, 57–59.PubMedCrossRefGoogle Scholar
  7. 7.
    Wallace, D. C., Stugard, C., Murdock, D., et al. (1997) Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc. Natl. Acad. Sci. USA 94, 14,900–14,905.PubMedCrossRefGoogle Scholar
  8. 8.
    Hirano, M., Shtilbans, A., Mayeux, R., et al. (1997) Apparent mtDNA heteroplasmy inAlzheimer’s disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proc. Natl. Acad. Sci. USA 94, 14,894–14,899.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Alice Wong
    • 1
  • Gino Cortopassi
    • 2
  1. 1.Department of Molecular BiosciencesUniversity of CaliforniaDavis
  2. 2.Molecular BiosciencesUniversity of CaliforniaDavis

Personalised recommendations