Skip to main content

Animal Models for Mitochondrial Disease

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 197))

Abstract

Although a variety of degenerative diseases are now known to be caused by two mutations in mitochondrial genes, the pathophysiology of these diseases remains poorly understood. As a consequence, relatively little progress has been made in developing new therapies for mitochondrial diseases. What has been needed are animal models for these diseases that are amenable to detailed biochemical, physiological, and molecular analysis, and on which promising therapies can be tested. In the past 5 yr, this deficiency has begun to be addressed by the construction of a number of mouse models of mitochondrial

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wallace, D. C., Brown, M. D., and Lott, M. T. (1996) Mitochondrial genetics, in Emery and Rimoin’s Principles and Practice of Medical Genetics (Rimoin, D. L., et al., eds.), Churchill Livingstone, London, pp. 277–332.

    Google Scholar 

  2. Wallace, D. C. (1997) Mitochondrial DNA mutations and bioenergetic defects in aging and degenerative diseases, in The Molecular and Genetic Basis of Neurological Disease (Rosenberg, R. N., et al., eds.), Butterworth-Heinemann, Boston, pp. 237–269.

    Google Scholar 

  3. Shoffner, J. M. and Wallace, D. C. (1995) Oxidative phosphorylation diseases, in The Metabolic and Molecular Basis of Inherited Disease (Scriver, C. R., et al., eds.), McGraw-Hill, New York, pp. 1535–1609.

    Google Scholar 

  4. Green, D. R. and Reed, J. C. (1998) Mitochondria and apoptosis. Science 281(5381), 1309–1312.

    PubMed  CAS  Google Scholar 

  5. Liu, X., et al. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1), 147–157.

    PubMed  CAS  Google Scholar 

  6. Brustovetsky, N. and Klingenberg, M. (1996) Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry 35(26), 8483–8488.

    PubMed  CAS  Google Scholar 

  7. Marzo, I., et al. (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281(5385), 2027–2031.

    PubMed  CAS  Google Scholar 

  8. Wallace, D. C. (1999) Mitochondrial diseases in man and mouse. Science 283(5407), 1482–1488.

    PubMed  CAS  Google Scholar 

  9. Wallace, D. C. (1992) Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256, 628–632.

    PubMed  CAS  Google Scholar 

  10. Wallace, D. C. (1992) Diseases of the mitochondrial DNA. Ann. Rev. Biochem. 61, 1175–1212.

    PubMed  CAS  Google Scholar 

  11. Stepien, G., et al. (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J. Biol. Chem. 267(21), 14,592–14,597.

    PubMed  CAS  Google Scholar 

  12. Neckelmann, N., et al. (1987) cDNA sequence of a human skelet al muscle ADP/ATP translocator: lack of a leader peptide, divergence from a fibroblast translocator cDNA, and coevolution with mitochondrial DNA genes. Proc. Natl. Acad. Sci. USA 84(21), 7580–7584.

    PubMed  CAS  Google Scholar 

  13. Houldsworth, J. and Attardi, G. (1988) Twodistinct genes for ADP/ATPtranslocase are expressed at the mRNA level in adult human liver. Proc. Natl. Acad. Sci. USA 85(2), 377–381.

    PubMed  CAS  Google Scholar 

  14. Giraud, S., et al. (1998) Expression of human ANT2 gene in highly proliferative cells: GRBOX, a new transcriptional element, is involved in the regulation of glycolytic ATP import into mitochondria. J. Mol. Biol. 281(3), 409–418.

    PubMed  CAS  Google Scholar 

  15. Cozens, A. L., Runswick, M. J., and Walker, J. E. (1989) DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. J. Mol. Biol. 206(2), 261–280.

    PubMed  CAS  Google Scholar 

  16. Li, K., et al. (1989) A human muscle adenine nucleotide translocator gene has four exons, is located on chromosome 4, and is differentially expressed. J. Biol. Chem. 264(24), 13,998–14,004.

    PubMed  CAS  Google Scholar 

  17. Wijmenga, C., et al. (1993) The human skelet al muscle adenine nucleotide translocator gene maps to chromosome 4q35 in the region of the facioscapulohumeral muscular dystrophy locus. Hum. Genet. 92(2), 198–203.

    PubMed  CAS  Google Scholar 

  18. Wijmenga, C., et al. (1992) Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nature Genet. 2(1), 26–30.

    PubMed  CAS  Google Scholar 

  19. Haraguchi, Y., et al. (1993) Genetic mapping of human heart-skelet al muscle adenine nucleotide translocator and its relationship to the facioscapulohumeral muscular dystrophy locus. Genomics 16(2), 479–485.

    PubMed  CAS  Google Scholar 

  20. Battini, R., et al. (1987) Molecular cloning of a cDNA for a human ADP/ATP carrier which is growth-regulated. J. Biol. Chem. 262(9), 4355–4359.

    PubMed  CAS  Google Scholar 

  21. Chen, S. T., et al. (1990) A human ADP/ATP translocase gene has seven pseudogenes and localizes to chromosome X. Somatic Cell Mol. Genet. 16(2), 143–149.

    CAS  Google Scholar 

  22. Ku, D. H., et al. (1990) The human fibroblast adenine nucleotide translocator gene. Molecular cloning and sequence. J. Biol. Chem. 265(27), 16,060–16,063.

    PubMed  CAS  Google Scholar 

  23. Schiebel, K., et al. (1994) Localization of the adenine nucleotide translocase gene ANT2 to chromosome Xq24-q25 with tight linkage to DXS425. Genomics 24(3), 605–606.

    PubMed  CAS  Google Scholar 

  24. Schiebel, K., et al. (1993) A human pseudoautosomal gene, ADP/ATP translocase, escapes X-inactivation whereas a homologue on Xq is subject to X-inactivation. Nature Genet. 3(1), 82–87.

    PubMed  CAS  Google Scholar 

  25. Slim, R., et al. (1993) A human pseudoautosomal gene encodes the ANT3 ADP/ATP translocase and escapes X-inactivation. Genomics 16(1), 26–33.

    PubMed  CAS  Google Scholar 

  26. Levy, S. E., et al. (2000) Expression and sequence analysis of the mouse adenine nucleotide translocase 1 and 2 genes. Gene 254, 57–66.

    PubMed  CAS  Google Scholar 

  27. Graham, B., et al. (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/skelet al muscle isoform of the adenine nucleotide translocator. Nature Genet. 16(3), 226–234.

    PubMed  CAS  Google Scholar 

  28. Mills, K. A., Ellison, J. W., and Mathews, K. D. (1996) The Ant1 gene maps near Klk3 on proximal mouse chromosome 8. Mammal. Genome 7(9), 707.

    CAS  Google Scholar 

  29. Ellison, J. W., et al. (1996) Rapid evolution of human pseudoautosomal genes and their mouse homologs. Mammal. Genome 7(1), 25–30.

    CAS  Google Scholar 

  30. Cassard, A. M., et al. (1990) Human uncoupling protein gene: structure, comparison with rat gene, and assignment to the long arm of chromosome 4. J. Cell. Biochem. 43(3), 255–264.

    PubMed  CAS  Google Scholar 

  31. Kozak, L. P., et al. (1988) The mitochondrial uncoupling protein gene. Correlation of exon structure to transmembrane domains. J. Biol. Chem. 263(25), 12,274–12,277.

    PubMed  CAS  Google Scholar 

  32. Jacobsson, A., et al. (1985) Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. J. Biol. Chem. 260(30), 16,250–16,254.

    PubMed  CAS  Google Scholar 

  33. Fleury, C., et al. (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia [see comments]. Nature Genet. 15(3), 269–272.

    PubMed  CAS  Google Scholar 

  34. Gong, D. W., et al. (1997) Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J. Biol. Chem. 272(39), 24,129–24,132.

    PubMed  CAS  Google Scholar 

  35. Solanes, G., et al. (1997) The human uncoupling protein-3 gene. Genomic structure, chromosomal localization, and genetic basis for short and long form transcripts. J. Biol. Chem. 272(41), 25,433–25,436.

    PubMed  CAS  Google Scholar 

  36. Vidal-Puig, A., et al. (1997) UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skelet al muscle and brown adipose tissue. Biochem. Biophys. Res. Commun. 235(1), 79–82.

    PubMed  CAS  Google Scholar 

  37. Boss, O., et al. (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408(1), 39–42.

    PubMed  CAS  Google Scholar 

  38. Ksenzenko, M., et al. (1983) Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc1 site of the mitochondrial respiratory chain. FEBS Lett. 155(1), 19–24.

    PubMed  CAS  Google Scholar 

  39. Turrens, J. F., Alexandre, A., and Lehninger, A. L. (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237(2), 408–414.

    PubMed  CAS  Google Scholar 

  40. Boveris, A. and Turrens, J. F. (1980) Production of superoxide anion by the NADH-dehydrogenase of mamalian mitochondria, in Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase. Developments in Biochemistry (Bannister, J. V. and Hill, H. A. O., eds.), Elsevier-North Holland, New York, pp. 84–91.

    Google Scholar 

  41. Turrens, J. F. and Boveris, A. (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191(2), 421–427.

    PubMed  CAS  Google Scholar 

  42. Bandy, B. and Davison, A. J. (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radical Biol. Med. 8(6), 523–539.

    CAS  Google Scholar 

  43. Goldhaber, J. I. and Weiss, J. N. (1992) Oxygen free radicals and cardiac reperfusion abnormalities. Hypertension 20(1), 118–127.

    PubMed  CAS  Google Scholar 

  44. Yan, L. J., Levine, R. L., and Sohal, R. S. (1997) Oxidative damage during aging targets mitochondrial aconitase [published erratum appears in Proc. Natl. Acad. Sci. US 1998 Feb 17;95(4):1968]. Proc. Natl. Acad. Sci. USA 94(21), 11,168–11,172.

    PubMed  CAS  Google Scholar 

  45. Rotig, A.,et al. (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nature Genet. 17(2), 215–217.

    PubMed  CAS  Google Scholar 

  46. Boveris, A., Oshino, N., and Chance, B. (1972) The cellular production of hydrogen peroxide. Biochem. J. 128(3), 617–630.

    PubMed  CAS  Google Scholar 

  47. Boveris, A. (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol. 105, 429–435.

    PubMed  CAS  Google Scholar 

  48. Cadenas, E. and Boveris, A. (1980) Enhancement of hydrogen peroxide formation by protophores and ionophores in antimycin-supplemented mitochondria. Biochem. J.. 188(1), 31–37.

    PubMed  CAS  Google Scholar 

  49. Chance, B., Sies, H., and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59(3), 527–605.

    PubMed  CAS  Google Scholar 

  50. Loschen, G., et al. (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42(1), 68–72.

    PubMed  CAS  Google Scholar 

  51. Petit, P. X., et al. (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett. 396(1), 7–13.

    PubMed  CAS  Google Scholar 

  52. Zoratti, M. and Szabo, I. (1995) The mitochondrial permeability transition. Biochim. Biophys. Acta 1241(2), 139–176.

    PubMed  Google Scholar 

  53. Mancini, M., et al. (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J. Cell Biol. 140(6), 1485–1495.

    PubMed  CAS  Google Scholar 

  54. Earnshaw, W. C. (1999) Apoptosis. A cellular poison cupboard [news]. Nature 397(6718), 387–389.

    PubMed  CAS  Google Scholar 

  55. Susin, S. A., et al. (1999) Molecular characterization of mitochondrial apoptosisinducing factor. Nature 397(6718), 441–446.

    PubMed  CAS  Google Scholar 

  56. Susin, S. A., et al. (1999) Mitochondrial release of caspase-2 and-9 during the apoptotic process. J. Exp. Med. 189(2), 381–394.

    PubMed  CAS  Google Scholar 

  57. Woo, M., et al. (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12(6), 806–819.

    PubMed  CAS  Google Scholar 

  58. Li, K., et al. (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101(4), 389–399.

    PubMed  CAS  Google Scholar 

  59. Szabo, C. (1997) Role of poly(ADP-ribose) synthetase activation in the suppression of cellular energetics in response to nitric oxide and peroxynitrite. Biochem. Soc. Trans. 25(3), 919–924.

    PubMed  CAS  Google Scholar 

  60. Snyder, S. H., Jaffrey, S. R., and Zakhary, R. (1998) Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Res. Rev. 26(2-3), 167–175.

    PubMed  CAS  Google Scholar 

  61. Eliasson, M. J.,et al. (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med. 3(10), 1089–1095.

    PubMed  CAS  Google Scholar 

  62. Takahashi, K., et al. (1999) Post-treatment with an inhibitor of poly(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Res. 829(1-2), 46–54.

    PubMed  CAS  Google Scholar 

  63. Pieper, A. A., et al. (1999) Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. USA 96(6), 3059–3064.

    PubMed  CAS  Google Scholar 

  64. Schuler, M., et al. (2000) p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J. Biol. Chem. 275(10), 7337–7342.

    PubMed  CAS  Google Scholar 

  65. Lin, S. J., Defossez, P. A., and Guarente, L. (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae [see comments]. Science 289(5487), 2126–2128.

    PubMed  CAS  Google Scholar 

  66. Suh, Y. A., et al. (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401(6748), 79–82.

    CAS  Google Scholar 

  67. Arnold, R. S., Shi, J., Murad, E., Whalen, A. M., et al. (2001) Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc. Natl. Acad. Sci. USA 98, 5550–5555.

    PubMed  CAS  Google Scholar 

  68. Chang, D.D. and Clayton, D. A. (1987) A mammalian mitochondrial RNA processing activity contains nucleus-encoded RNA. Science 235(4793), 1178–1184.

    PubMed  CAS  Google Scholar 

  69. Chang, D. D. and Clayton, D. A. (1987) A novel endoribonuclease cleaves at a priming site of mouse mitochondrial DNA replication. EMBO J. 6(2), 409–417.

    PubMed  CAS  Google Scholar 

  70. Chang, D. D. and Clayton, D. A. (1989) Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 56(1), 131–139.

    PubMed  CAS  Google Scholar 

  71. Clayton, D. A. (1994) A nuclear function for RNase MRP. Proc. Natl. Acad. Sci. USA 91(11), 4615–4617.

    PubMed  CAS  Google Scholar 

  72. Fisher, R. P., Topper, J. N., and Clayton, D. A. (1987) Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell 50(2), 247–258.

    PubMed  CAS  Google Scholar 

  73. Dairaghi, D. J., Shadel, G. S., and Clayton, D. A. (1995) Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 249(1), 11–28.

    PubMed  CAS  Google Scholar 

  74. Ghivizzani, S. C., et al. (1994) In organello footprint analysis of human mitochondrial DNA: human mitochondrial transcription factor A interactions at the origin of replication. Mol. Cell. Biol. 14(12), 7717–7730.

    PubMed  CAS  Google Scholar 

  75. Ghivizzani, S. C., Madsen, C. S., and Hauswirth, W. W. (1993) In organello foot-printing. Analysis of protein binding at regulatory regions in bovine mitochondrial DNA. J. Biol. Chem. 268(12), 8675–8682.

    PubMed  CAS  Google Scholar 

  76. Ikeda, S., Sumiyoshi, H., and Oda, T. (1994) DNA binding properties of recombinant human mitochondrial transcription factor 1. Cell. Mol. Biol. 40(4), 489–493.

    PubMed  CAS  Google Scholar 

  77. Bunn, C. L., Wallace, D. C., and Eisenstadt, J. M. (1974) Cytoplasmic inheritance of chlormaphenicol resistance in mouse tissue culture cells. Proc. Natl. Acad. Sci. USA 71(5), 1681–1685.

    PubMed  CAS  Google Scholar 

  78. Wallace, D. C., Bunn, C. L., and Eisenstadt, J. M. (1975) Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J. Cell Biol. 67(1), 174–188.

    PubMed  CAS  Google Scholar 

  79. Wallace, D. C. (1982) Cytoplasmic inheritance of chloramphenicol resistance in mammalian cells, in Techniques in Somatic Cell Genetics (Shay, J. W., ed.), Plenum, New York, pp. 159–187.

    Google Scholar 

  80. Ziegler, M. L. and Davidson, R. L. (1981) Elimination of mitochondrial elements and improved viability in hybrid cells. Somatic Cell Genet. 7(1), 73–88.

    PubMed  CAS  Google Scholar 

  81. Trounce, I. and Wallace, D. C. (1996) Production of transmitochondrial mouse cell lines by cybrid rescue of rhodamine-6G pre-treated L-cells. Somatic Cell Mol. Genet. 22(1), 81–85.

    CAS  Google Scholar 

  82. King, M. P. and Attardi, G. (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246(4929), 500–503.

    PubMed  CAS  Google Scholar 

  83. Trounce, I. A., et al. (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol. 264, 484–509.

    PubMed  CAS  Google Scholar 

  84. Blanc, H., et al. (1981) Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3 end of the large ribosomal RNA. Proc. Natl. Acad. Sci. USA 78(6), 3789–3793.

    PubMed  CAS  Google Scholar 

  85. Blanc, H., Adams, C.W., and Wallace, D. C. (1981) Different nucleotide changes in the large rRNA gene of the mitochondrial DNA confer chloramphenicol resistance on two human cell lines. Nucleic Acids Res. 9(21), 5785–5795.

    PubMed  CAS  Google Scholar 

  86. Wallace, D. C., et al. (2001) Mitochondria and neuro-ophthalmological diseases, in The Metabolic and Molecular Basis of Inherited Disease (Scriver, C. R., et al., eds.), McGraw-Hill, New York, pp. 2425–2512.

    Google Scholar 

  87. Wallace, D. C., et al. (1988) Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55(4), 601–610.

    PubMed  CAS  Google Scholar 

  88. Shoffner, J. M., et al. (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell 61(6), 931–937.

    PubMed  CAS  Google Scholar 

  89. Goto, Y., Nonaka, I., and Horai, S. (1990) A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies [see comments]. Nature 348(6302), 651–653.

    PubMed  CAS  Google Scholar 

  90. van den Ouweland, J. M., et al. (1994) Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNALeu(UUR) gene. Diabetes 43(6), 746–751.

    PubMed  Google Scholar 

  91. van den Ouweland, J. M., et al. (1992) Mutations in mitochondrial tRNA genes: non-linkage with syndromes of Wolfram and chronic progressive external ophthalmoplegia. Nucleic Acids Res. 20(4), 679–682.

    PubMed  Google Scholar 

  92. van den Ouweland, J. M., et al. (1992) Mutation in mitochondrial tRNALeu(UUR)gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nature Gen. 1, 368–371.

    Google Scholar 

  93. Shoffner, J. M., et al. (1995) Mitochondrial encephalomyopathy associated with a single nucleotide pair deletion in the mitochondrial tRNALeu(UUR) gene. Neurology 45(2), 286–292.

    PubMed  CAS  Google Scholar 

  94. Hutchin, T., et al. (1993) A molecular basis for human hypersensitivity to aminoglycoside antibiotics. Nucleic Acids Res. 21(18), 4174–4179.

    PubMed  CAS  Google Scholar 

  95. Prezant, T. R., et al. (1993) Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nature Genet. 4(3), 289–294.

    PubMed  CAS  Google Scholar 

  96. Ballinger, S. W., et al. (1992) Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nature Genet. 1, 11–15.

    PubMed  CAS  Google Scholar 

  97. Ballinger, S. W., et al. (1994) Mitochondrial diabetes revisited [letter]. Nature Genet. 7(4), 458–459.

    PubMed  CAS  Google Scholar 

  98. Holt, I. J., Harding, A. E., and Morgan-Hughes, J. A. (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331(6158), 717–719.

    PubMed  CAS  Google Scholar 

  99. Shoubridge, E. A., Karpati, G., and Hastings, K. E. M. (1990) Deletion mutants are functionally dominant over wild-type mitochondrial genomes in skelet al muscle fiber segments in mitochondrial disease. Cell 62(1), 43–49.

    PubMed  CAS  Google Scholar 

  100. Mitani, I., et al. (1998) Detection of mitochondrial DNA nucleotide 11778 point mutation of Leber hereditary optic neuropathy from archival stained histopathological preparations. Acta Ophthalmol. Scand. 76(1), 14–19.

    PubMed  CAS  Google Scholar 

  101. Pearson, H. A., et al. (1979) A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic function. J. Pediatr. 95(6), 976.

    PubMed  CAS  Google Scholar 

  102. Kapsa, R., et al. (1994) A novel mtDNA deletion in an infant with Pearson syndrome. J. Inherited Metab. Dis. 17(5), 521–526.

    PubMed  CAS  Google Scholar 

  103. Cormier, V., et al. (1991) Pearson’s syndrome. Pancytopenia with exocrine pancreatic insufficiency: new mitochondrial disease in the first year of childhood. Arch. Fr. Pediatr. 48(3), 171–178.

    PubMed  CAS  Google Scholar 

  104. McShane, M. A., et al. (1991) Pearson syndrome and mitochondrial encephalomyopathy in patient with a deletion of mtDNA. Am. J. Hum. Genet. 48(1), 39–42.

    PubMed  CAS  Google Scholar 

  105. Poulton, J., et al. (1995) Mitochondrial DNA, diabetes and pancreatic pathology in Kearns-Sayre syndrome. Diabetologia 38(7), 868–871.

    PubMed  CAS  Google Scholar 

  106. Rotig, A., et al. (1995) Spectrum of mitochondrial DNA rearrangements in the Pearson marrow-pancreas syndrome. Hum. Mol. Genet. 4(8), 1327–1330.

    PubMed  CAS  Google Scholar 

  107. Heddi, A., et al. (1999) Coordinate induction of energy gene expression in tissues of mitochondrial disease patients. J. Biol. Chem. 274(33), 22,968–22,976.

    PubMed  CAS  Google Scholar 

  108. Heddi, A., et al. (1993) Mitochondrial DNA expression in mitochondrial myopathies and coordinated expression of nuclear genes involved in ATP production. J. Biol. Chem. 268(16), 12,156–12,163.

    PubMed  CAS  Google Scholar 

  109. Heddi, A., et al. (1994) Steady state levels of mitochondrial and nuclear oxidative phosphorylation transcripts in Kearns-Sayre syndrome. Biochim. Biophys. Acta 1226(2), 206–212.

    PubMed  CAS  Google Scholar 

  110. Stachowiak, O., et al. (1998) Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J. Biol. Chem. 273(27), 16,694–16,699.

    PubMed  CAS  Google Scholar 

  111. Suomalainen, A. and Kaukonen, J. (2001) Diseases caused by nuclear genes affecting mtDNA stability. Am. J. Med. Genet. 106, 53–61.

    PubMed  CAS  Google Scholar 

  112. Orth M. and Schapira, A. H. (2001) Mitochondria and degenerative disorders. Am. J. Med. Genet. 106, 27–36.

    PubMed  CAS  Google Scholar 

  113. Shoubridge, E. A. (2001) Cytochrome c oxidase deficiency. Am. J. Med. Genet. 106, 46–52.

    PubMed  CAS  Google Scholar 

  114. Triepels, R. H., Van Den Heuvel, L. P., Trijbels, J. M., Smeitink, J. A. (2001) Respiratory chain complex I deficiency. Am. J. Med. Genet. 106, 37–45.

    PubMed  CAS  Google Scholar 

  115. Ridanpaa, M., et al. (2001) Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell p. 195–203.

    Google Scholar 

  116. Tritschler, H.-J., et al. (1992) Mitochondrial myopathy of childhood associated with depletion of mitochondrial DNA. Neurology 42(1), 209–217.

    PubMed  CAS  Google Scholar 

  117. Mazziotta, M. R., et al. (1992) Fatal infantile liver failure associated with mitochondrial DNA depletion. J. Pediatr. 121(6), 896–901.

    PubMed  CAS  Google Scholar 

  118. Moraes, C. T., et al. (1991) MtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. Am. J. Hum. Genet. 48(3), 492–501.

    PubMed  CAS  Google Scholar 

  119. Dahl, H. H. (1998) Getting to the nucleus of mitochondrial disorders: identification of respiratory chain-enzyme genes causing Leigh syndrome [editorial; comment]. Am. J. Hum. Genet. 63(6), 1594–1597.

    PubMed  CAS  Google Scholar 

  120. Zhu, Z., et al. (1998) SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nature Genet. 20(4), 337–343.

    PubMed  CAS  Google Scholar 

  121. Tiranti, V., et al. (1998) Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet. 63(6), 1609–1621.

    PubMed  CAS  Google Scholar 

  122. Valnot, I., et al. (2000) Mutations in SC01 gene causes mitochondrial cytochrome c oxidase deficiency presenting as neonatal-onset hepatic failure and encephalopathy. Am. J. Hum. Genet. 67(4 Suppl. 2), A20 (abstract).

    Google Scholar 

  123. Papadopoulou, L. C., et al. (1999) Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nature Gen. 23(3), 333–337.

    CAS  Google Scholar 

  124. Dickinson, E. K., et al. (2000) A human SCO2 mutation helps define the role of Sco1p in the cytochrome oxidase assembly pathway. J. Biol. Chem. 275(35), 26,780–26,785.

    PubMed  CAS  Google Scholar 

  125. Jin, H., et al. (1996) A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nature Genet. 14(2), 177–180.

    PubMed  CAS  Google Scholar 

  126. Wallace, D. C. and Murdock, D. G. (1999) Mitochondria and dystonia: the movement disorder connection? Proc. Natl. Acad. Sci. USA 96(5), 1817–1819.

    PubMed  CAS  Google Scholar 

  127. Koehler, C. M., et al. (1999) Human deafness dystonia syndrome is a mitochon-drial disease. Proc. Natl. Acad. Sci. USA 96(5), 2141–2146.

    PubMed  CAS  Google Scholar 

  128. Wilson, R. B. and Roof, D. M. (1997) Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nature Genet. 16(4), 352–357.

    PubMed  CAS  Google Scholar 

  129. Koutnikova, H., et al. (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nature Genet. 16(4), 345–351.

    PubMed  CAS  Google Scholar 

  130. Zeviani, M., et al. (1989) An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339(6222), 309–311.

    PubMed  CAS  Google Scholar 

  131. Zeviani, M., et al. (1990) Nucleus-driven multiple large-scale deletions of the human mitochondrial genome: a new autosomal dominant disease. Am. J. Hum. Genet. 47, 904–914.

    PubMed  CAS  Google Scholar 

  132. Cormier, V., et al. (1991) Autosomal dominant deletions of the mitochondrial genome in a case of progressive encephalomyopathy. Am. J. Hum. Genet. 48(4), 643–648.

    PubMed  CAS  Google Scholar 

  133. Moraes, C. T., et al. (1993) Atypical clinical presentations associated with the MELAS mutation at position 3243 of human mitochondrial DNA. Neuromuscul. Dis. 3(1), 43–50.

    CAS  Google Scholar 

  134. Checcarelli, N., et al. (1994) Multiple deletions of mitochondrial DNA in sporadic and atypical cases of encephalomyopathy. J. Neurol. Sci. 123(1-2), 74–79.

    PubMed  CAS  Google Scholar 

  135. Suomalainen, A., et al. (1992) Multiple deletions of mitochondrial DNA in several tissues of a patient with severe retarded depression and familial progressive external ophthalmoplegia. J. Clin. Invest. 90, 61–66.

    PubMed  CAS  Google Scholar 

  136. Suomalainen, A., et al. (1995) An autosomal locus predisposing to deletions of mitochondrial DNA. Nature Genet. 9(2), 146–151.

    PubMed  CAS  Google Scholar 

  137. Zeviani, M., et al. (1995) Searching for genes affecting the structural integrity of the mitochondrial genome. Biochim. Biophys. Acta 1271(1), 153–158.

    PubMed  Google Scholar 

  138. Kaukonen, J., et al. (2000) Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289(5480), 782–785.

    PubMed  CAS  Google Scholar 

  139. Nishino, I., Spinazzola, A., and Hirano, M. (1999) Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283(5402), 689–692.

    PubMed  CAS  Google Scholar 

  140. Boffoli, D., et al. (1994) Decline with age of the respiratory chain activity in human skelet al muscle. Biochim. Biophys. Acta 1226(1), 73–82.

    PubMed  CAS  Google Scholar 

  141. Cooper, J. M., Mann, V. M., and Schapira, A. H. V. (1992) Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skelet al muscle: effect of ageing. J. Neurol. Sci. 113(1), 91–98.

    PubMed  CAS  Google Scholar 

  142. Trounce, I., Byrne, E., and Marzuki, S. (1989) Decline in skelet al muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 1, 637–639.

    PubMed  CAS  Google Scholar 

  143. Yen, T. C., et al. (1989) Liver mitochondrial respiratory functions decline with age. Biochem. Biophys. Res. Commun. 165, 944–1003.

    PubMed  CAS  Google Scholar 

  144. Bowling, A. C.,et al. (1993) Age-dependent impairment of mitochondrial function in primate brain. J. Neurochem. 60(5), 1964–1967.

    PubMed  CAS  Google Scholar 

  145. Cortopassi, G. A. and Arnheim, N. (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18(23), 6927–6933.

    PubMed  CAS  Google Scholar 

  146. Cortopassi, G. A., et al. (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl. Acad. Sci. USA 89(16), 7370–7374.

    PubMed  CAS  Google Scholar 

  147. Cortopassi, G. A., Pasinetti, G., and Arnheim, N. (1992) Mosaicism for levels of a somatic mutation of mitochondrial DNA in different brain regions and its implications for neurological disease, in Progress in Parkinson’s Disease Research II (Hatefi, F. and Weiner, W. J., eds.), Futura, Mt. Kisco, NY.

    Google Scholar 

  148. Linnane, A. W., et al. (1990) Mitochondrial gene mutation: the aging process and degenerative diseases. Biochem. Int. 22(6), 1067–1076.

    PubMed  CAS  Google Scholar 

  149. Zhang, C., et al. (1992) Multiple mitochondrial DNA deletions in an elderly human individual. FEBS Lett. 297, 4–8.

    Google Scholar 

  150. Corral-Debrinski, M., et al. (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nature Genet. 2(4), 324–329.

    PubMed  CAS  Google Scholar 

  151. Soong, N. W., et al. (1992) Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain. Nature Genet. 2, 318–323.

    PubMed  CAS  Google Scholar 

  152. Corral-Debrinski, M., et al. (1991) Hypoxemia is associated with mitochondrial DNA damage and gene induction. JAMA 266(13), 1812–1816.

    PubMed  CAS  Google Scholar 

  153. Corral-Debrinski, M., et al. (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat. Res. 275(3-6), 169–180.

    PubMed  CAS  Google Scholar 

  154. Simonetti, S., et al. (1992) Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim. Biophys. Acta 1180(2), 113–122.

    PubMed  CAS  Google Scholar 

  155. Jazin, E. E., et al. (1996) Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc. Natl. Acad. Sci. USA 93(22), 12,382–12,387.

    PubMed  CAS  Google Scholar 

  156. Michikawa, Y., et al. (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286(5440), 774–779.

    PubMed  CAS  Google Scholar 

  157. Murdock, D. G., Christacos, N. C., and Wallace, D. C. (2000) The age-related accumulation of a mitochondrial DNA control region mutation in muscle, but not brain, detected by a sensitive PNA-directed PCR clamping based method. Nucleic Acids Res. 28(21), 4350–4355.

    PubMed  CAS  Google Scholar 

  158. Trounce, I., et al. (2000) Cloning of neuronal mtDNA variants in cultured cells by synaptosome fusion with mtDNA-less cells. Nucleic Acids Res. 28(10), 2164–2170.

    PubMed  CAS  Google Scholar 

  159. Richter, C., Park, J. W. and Ames, B. N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85(17), 6465–6467.

    PubMed  CAS  Google Scholar 

  160. Ames, B. N., Shigenaga, M. K. and Hagen, T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90(17), 7915–7922.

    PubMed  CAS  Google Scholar 

  161. Hayakawa, M., et al. (1993) Age-associated damage in mitochondrial DNA in human hearts. Mol. Cell. Biochem. 119(1-2), 95–103.

    PubMed  CAS  Google Scholar 

  162. Mecocci, P., et al. (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann. Neurol. 34(4), 609–616.

    PubMed  CAS  Google Scholar 

  163. Muller-Hocker, J. (1990) Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration. J. Neurol. Sci. 100, 14–21.

    PubMed  CAS  Google Scholar 

  164. Muller-Hocker, J., et al. (1992) Progressive loss of cytochrome c oxidase in the human extraocular muscles in ageing-a cytochemical-immunohistochmeical study. Mutat. Res. 275, 115–124.

    PubMed  CAS  Google Scholar 

  165. Muller-Hocker, J., et al. (1993) Different in situ hybridization patterns of mitochondrial DNA in cytochrome c oxidase-deficient extraocular muscle fibres in the elderly. Virchows Arch A, Pathol. Anat. Histopathol. 422, 7–15.

    CAS  Google Scholar 

  166. Khrapko, K., et al. (1999) Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. Nucleic Acids Res. 27(11), 2434–2441.

    PubMed  CAS  Google Scholar 

  167. Melov, S., et al. (1997) Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res. 25(5), 974–982.

    PubMed  CAS  Google Scholar 

  168. Lee, C. K., et al. (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285(5432), 1390–1393.

    PubMed  CAS  Google Scholar 

  169. Lee, C. K., Weindruch, R., and Prolla, T. A. (2000) Gene-expression profile of the ageing brain in mice. Nature Genet. 25(3), 294–297.

    PubMed  CAS  Google Scholar 

  170. Masoro, E. J. (1993) Dietary restriction and aging. J. Am. Geriatr. Soc. 41(9), 994–999.

    PubMed  CAS  Google Scholar 

  171. Masoro, E. J., et al. (1992) Dietary restriction alters characteristics of glucose fuel use (published erratum appears in J. Gerontol. 1993 Mar;48(2):B73). J. Gerontol. 47(6), B202–B208.

    PubMed  CAS  Google Scholar 

  172. McCarter, R. J. and Palmer, J. (1992) Energy metabolism and aging: a lifelong study of Fischer 344 rats. Am. J. Physiol. 263(3 Pt. 1), E448–E452.

    PubMed  CAS  Google Scholar 

  173. Sohal, R. S., et al. (1994) Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 74(1-2), 121–133.

    PubMed  CAS  Google Scholar 

  174. Harrison, D. E. and Archer, J. R. (1987) Genetic differences in effects of food restriction on aging in mice. J. Nutr. 117(2), 376–382.

    PubMed  CAS  Google Scholar 

  175. Yan, L. J. and Sohal, R. S. (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc. Natl. Acad. Sci. USA 95(22), 12,896–12,901.

    PubMed  CAS  Google Scholar 

  176. Sohal, R. S. and Dubey, A. (1994) Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radical Biol. Med. 16(5), 621–626.

    CAS  Google Scholar 

  177. Dorner G. and Mohnike, A. (1976) Further evidence for a predominantly maternal transmission of maturity-onset type diabetes. Endokrinologie 68(1), 121–124.

    PubMed  CAS  Google Scholar 

  178. Dorner, G., Mohnike, A., and Steindel, E. (1975) On possible genetic and epigenetic modes of diabetes transmission. Endokrinologie 66(2), 225–227.

    PubMed  CAS  Google Scholar 

  179. Dorner, G., Plagemann, A., and Reinagel, H. (1987) Familial diabetes aggregation in type I diabetics: gestational diabetes an apparent risk factor for increased diabetes susceptibility in the offspring. Exp. Clin. Endocrinol. 89(1), 84–90.

    PubMed  CAS  Google Scholar 

  180. Freinkel, N., et al. (1986) Gestational diabetes mellitus: a syndrome with phenotypic and genotypic heterogeneity. Horm. Metab. Res. 18(7), 427–430.

    PubMed  CAS  Google Scholar 

  181. Pimentel, E. (1979) Some aspects of the genetics and etiology of spontaneous diabetes mellitus. Acta Diabetol. Latina 16(3), 193–201.

    CAS  Google Scholar 

  182. Alcolado, J. C. and Thomas, A. W. (1995) Maternally inherited diabetes mellitus: the role of mitochondrial DNA defects. Diabetic Med. 12(2), 102–108.

    PubMed  CAS  Google Scholar 

  183. Gerbitz, K. D., et al. (1995) Mitochondrial diabetes mellitus: a review. Biochim. Biophys. Acta 1271(1), 253–260.

    PubMed  Google Scholar 

  184. Gerbitz, K. D., Gempel, K., and Brdiczka, D. (1996) Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit. Diabetes 45(2), 113–126.

    CAS  Google Scholar 

  185. Alcolado, J. C., et al. (1994) Insulin resistance and impaired glucose tolerance [letter; comment]. Lancet 344(8932), 1293–1294.

    PubMed  CAS  Google Scholar 

  186. Kadowaki, T., et al. (1995) A subtype of diabetes mellitus associated with a mutation in the mitochondrial gene. Muscle Nerve 3(41), S137–S141.

    PubMed  CAS  Google Scholar 

  187. Suzuki, S., et al. (1994) Pancreatic beta-cell secretory defect associated with mitochondrial point mutation of the tRNALeu(UUR) gene: a study in seven families with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). Diabetologia 37(8), 818–825.

    PubMed  CAS  Google Scholar 

  188. Kanamori, A., et al. (1994) Insulin resistance in mitochondrial gene mutation. Diabetes Care 17(7), 778–779.

    PubMed  CAS  Google Scholar 

  189. Kanamori, A., et al. (1995) Response to Walker et al. (Insulin sensitivity and mitochondrial gene mutation). Diabetes Care 18(2), 274–275.

    Google Scholar 

  190. Odawara, M., et al. (1995) Mitochondrial gene mutation as a cause of insulin resistance. Diabetes Care 18(2), 275.

    PubMed  CAS  Google Scholar 

  191. Koster, J. C., et al. (2000) Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell 100(6), 645–654.

    PubMed  CAS  Google Scholar 

  192. German, M. S. (1993) Glucose sensing in pancreatic islet beta cells: the key role of glucokinase and the glycolytic intermediates. Proc. Natl. Acad. Sci. USA 90(5), 1781–1785.

    PubMed  CAS  Google Scholar 

  193. Gidh-Jain, M., et al. (1993) Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc. Natl. Acad. Sci. USA 90(5), 1932–1936.

    PubMed  CAS  Google Scholar 

  194. Stoffel, M., et al. (1992) Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus [published erratum appears in Proc. Natl. Acad. Sci. USA 89(21): 10,562]. Proc. Natl. Acad. Sci. USA 89(16), 7698–7702.

    PubMed  CAS  Google Scholar 

  195. Stoffel, M., et al. (1992) Missense glucokinase mutation in maturity-onset diabetes of the young and mutation screening in late-onset diabetes. Nature Genet. 2(2), 153–156.

    PubMed  CAS  Google Scholar 

  196. Stoffel, M., et al. (1993) Identification of glucokinase mutations in subjects with gestational diabetes mellitus. Diabetes 42(6), 937–940.

    PubMed  CAS  Google Scholar 

  197. Gelb, B. D., et al. (1992) Targeting of hexokinase 1 to liver and hepatoma mitochondria. Proc. Natl. Acad. Sci. USA 89(1), 202–206.

    PubMed  CAS  Google Scholar 

  198. Malaisse-Lagae, F. and Malaisse, W. J. (1988) Hexose metabolism in pancreatic islets: regulation of mitochondrial hexokinase binding. Biochem. Med. Metab. Biol. 39(1), 80–89.

    PubMed  CAS  Google Scholar 

  199. Adams, V., et al. (1991) Porin interaction with hexokinase and glycerol kinase: metabolic microcompartmentation at the outer mitochondrial membrane. Biochem. Med. Metab. Biol. 45(3), 271–291.

    PubMed  CAS  Google Scholar 

  200. McCabe, E. R. (1994) Microcompartmentation of energy metabolism at the outer mitochondrial membrane: role in diabetes mellitus and other diseases. J. Bioenerg. Biomembr. 26(3), 317–325.

    PubMed  CAS  Google Scholar 

  201. Wallace, D. C. (1994) Mitochondrial DNA mutations in diseases of energy metabolism. J. Bioenerg. Biomembr. 26(3), 241–250.

    PubMed  CAS  Google Scholar 

  202. Wollheim, C. B. (2000) Beta-cell mitochondria in the regulation of insulin secretion: a new culprit in type II diabetes. Diabetologia 43(3), 265–277.

    PubMed  CAS  Google Scholar 

  203. Eto, K., et al. (1999) Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283(5404), 981–985.

    PubMed  CAS  Google Scholar 

  204. Velho, G. and Froguel, R (1998) Genetic, metabolic and clinical characteristics of maturity onset diabetes of the young. Eur. J. Endocrinology 138(3), 233–239.

    CAS  Google Scholar 

  205. Altshuler, D., et al. (2000) The common PPARgammaPro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genet. 26(1), 76–80.

    PubMed  CAS  Google Scholar 

  206. Gebhart, S. S.,et al. (1996) Insulin resistance associated with maternally inherited diabetes and deafness. Metabolism 45(4), 526–531.

    PubMed  CAS  Google Scholar 

  207. Nishikawa, T., et al. (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404(6779), 787–790.

    PubMed  CAS  Google Scholar 

  208. Sligh, J. E., et al. (2000) Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc. Natl. Acad. Sci. USA 97(26), 14,461–14,466.

    PubMed  CAS  Google Scholar 

  209. Inoue, K., et al. (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes, Nature Genet. 26, 176–181.

    PubMed  CAS  Google Scholar 

  210. Watanabe, T., Dewey, M. J., and Mintz, B. (1978) Teratocarcinoma cells as vehicles for introducing specific mutant mitochondrial genes into mice. Proc. Natl. Acad. Sci. USA 75(10), 5113–5117.

    PubMed  CAS  Google Scholar 

  211. Levy, S. E., et al. (1999) Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse. Transgen. Res. 8(2), 137–145.

    CAS  Google Scholar 

  212. Marchington, D. R., Barlow, D., and Poulton, J. (1999) Transmitochondrial mice carrying resistance to chloramphenicol on mitochondrial DNA: developing the first mouse model of mitochondrial DNA disease. Nature Med. 5(8), 957–960.

    PubMed  CAS  Google Scholar 

  213. Ferris, S. D., Sage, R. D., and Wilson, A. C. (1982) Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295(5845), 163–165.

    PubMed  CAS  Google Scholar 

  214. Pinkert, C. A., et al. (1997) Mitochondria transfer into mouse ova by microinjection. Transgen. Res. 6(6), 379–383.

    CAS  Google Scholar 

  215. Irwin, M. H., Johnson, L. W., and Pinkert, C. A. (1999) Isolation and microinjection of somatic cell-derived mitochondria and germline heteroplasmy in transmitochondrial mice. Transgen. Res. 8(2), 119–123.

    CAS  Google Scholar 

  216. Jenuth, J. P., et al. (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA [see comments]. Nature Genet. 14(2), 146–151.

    PubMed  CAS  Google Scholar 

  217. Jenuth, J. P., Peterson, A. C., and Shoubridge, E. A. (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nature Genet. 16(1), 93–95.

    PubMed  CAS  Google Scholar 

  218. Meirelles, F. V. and Smith, L. C. (1998) Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos. Genetics 148(2), 877–883.

    PubMed  CAS  Google Scholar 

  219. Meirelles, F. V. and Smith, L. C. (1997) Mitochondrial genotype segregation in a mouse heteroplasmic lineage produced by embryonic karyoplast transplantation. Genetics 145(2), 445–451.

    PubMed  CAS  Google Scholar 

  220. Larsson, N. G., et al. (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice [see comments]. Nature Genet. 18(3), 231–236.

    PubMed  CAS  Google Scholar 

  221. Wang, J., et al. (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expres-sion. Nature Genet. 21(1), 133–137.

    PubMed  CAS  Google Scholar 

  222. Silva, J. P., et al. (2000) Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nature Genet. 26(3), 336–340.

    PubMed  CAS  Google Scholar 

  223. Murdock, D., et al. (1999) Up-regulation of nuclear and mitochondrial genes in the skelet al muscle of mice lacking the heart/muscle isoform of the adenine nucleotide translocator. J. Biol. Chem. 274(20), 14,429–14,433.

    PubMed  CAS  Google Scholar 

  224. Esposito, L. A., et al. (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc. Natl. Acad. Sci. USA 96(9), 4820–4825.

    PubMed  CAS  Google Scholar 

  225. Ridley, R. G., et al. (1986) Complete nucleotide and derived amino acid sequence of cDNA encoding the mitochondrial uncoupling protein of rat brown adipose tissue: lack of a mitochondrial targeting presequence. Nucleic Acids Res. 14(10), 4025–4035.

    PubMed  CAS  Google Scholar 

  226. Reichling, S., et al. (1987) Loss of brown adipose tissue uncoupling protein mRNA on deacclimation of cold-exposed rats. Biochem. Biophys. Res. Commun. 142(3), 696–701.

    PubMed  CAS  Google Scholar 

  227. Nicholls, D. G. and Locke, R. M. (1984) Thermogenic mechanisms in brown fat. Physiol. Rev. 64(1), 1–64.

    PubMed  CAS  Google Scholar 

  228. Thomas, S. A. and Palmiter, R. D. (1997) Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 387(6628), 94–97.

    PubMed  CAS  Google Scholar 

  229. Enerback, S., et al. (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387(6628), 90–94.

    PubMed  CAS  Google Scholar 

  230. Arsenijevic, D., et al. (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nature Genet. 26(4), 435–439.

    PubMed  CAS  Google Scholar 

  231. Vidal-Puig, A. J., et al. (2000) Energy metabolism in uncoupling protein 3 gene knockout mice. J. Biol. Chem. 275(21), 16,258–16,266.

    PubMed  CAS  Google Scholar 

  232. Zhang, C., et al. (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105(6), 745–755.

    PubMed  CAS  Google Scholar 

  233. Polonsky, K. S. and Semenkovich, C. F. (2001) The pancreatic beta cell heats up. UCP2 and insulin secretion in diabetes. Cell 105(6), 705–707.

    PubMed  CAS  Google Scholar 

  234. Esposito, L. A., et al. (2000) Mitochondrial oxidative stress in mice lacking the glutathione peroxidase-1 gene. Free Radical Biol. Med. 28(5), 754–766.

    CAS  Google Scholar 

  235. Cortopassi, G. and Wang, E. (1995) Modelling the effects of age-related mtDNA mutation accumulation; complex I deficiency, superoxide and cell death. Biochim. Biophys. Acta 1271(1), 171–176.

    PubMed  Google Scholar 

  236. Li, Y., et al. (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet. 11(4), 376–381.

    PubMed  CAS  Google Scholar 

  237. Lebovitz, R. M., et al. (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA 93(18), 9782–9787.

    PubMed  CAS  Google Scholar 

  238. Melov, S., et al. (1998) A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase [see comments]. Nature Genet. 18(2), 159–163.

    PubMed  CAS  Google Scholar 

  239. Reaume, A. G., et al. (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genet. 13(1), 43–47.

    PubMed  CAS  Google Scholar 

  240. Carlsson, L. M., et al. (1995) Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl. Acad. Sci. USA 92(14), 6264–6268.

    PubMed  CAS  Google Scholar 

  241. Melov, S., et al. (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl. Acad. Sci. USA 96(3), 846–851.

    PubMed  CAS  Google Scholar 

  242. Kokoszka, J. E., et al. (2001) Increased mitochondrial oxidative stress in the Sod2 (+/-) mouse results in the age-related decline of mitochondrial function culminat-ing in increased apoptosis. Proc. Natl. Acad. Sci. USA 98(5), 2278–2283.

    PubMed  CAS  Google Scholar 

  243. Cai, J., et al. (2000) Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. Free Radical Biol. Med. 29(3-4), 334–342.

    CAS  Google Scholar 

  244. Nakahara, H., et al. (1998) Mitochondrial dysfunction in the senescence acceler-ated mouse (SAM). Free Radical Biol. Med. 24(1), 85–92.

    CAS  Google Scholar 

  245. Williams, M. D., et al. (1998) Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J. Biol. Chem. 273(43), 28,510–28,515.

    PubMed  CAS  Google Scholar 

  246. Melov, S., et al. (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289(5484), 1567–1569.

    PubMed  CAS  Google Scholar 

  247. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., et al. (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517), 727–730.

    PubMed  CAS  Google Scholar 

  248. Yoshida, H., et al. (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94(6), 739–750.

    PubMed  CAS  Google Scholar 

  249. Cecconi, F., et al. (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94(6), 727–737.

    PubMed  CAS  Google Scholar 

  250. Kuida, K., et al. (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94(3), 325–337.

    PubMed  CAS  Google Scholar 

  251. Hakem, R., et al. (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94(3), 339–352.

    PubMed  CAS  Google Scholar 

  252. Kuida, K., et al. (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384(6607), 368–372.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Wallace, D.C. (2002). Animal Models for Mitochondrial Disease. In: Copeland, W.C. (eds) Mitochondrial DNA. Methods in Molecular Biology™, vol 197. Humana Press. https://doi.org/10.1385/1-59259-284-8:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-284-8:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-972-8

  • Online ISBN: 978-1-59259-284-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics