Skip to main content

Preparation of GTPases for Structural and Biophysical Analysis

  • Protocol
GTPase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 189))

Abstract

Members of the Ras superfamily of small GTPases (p21) are involved in the regulation of a large variety of key cellular processes, including cell differentiation and proliferation, membrane trafficking, and nuclear import and export. Based on sequence homology, this superfamily can be divided into the Ras, Rho, Ran, Arf, Rab, and Rad subfamilies, which all have distinct biological activities. All members of this superfamily act as molecular switches and become activated and capable of transducing a signal upon binding to GTP, while guanosine triphosphate (GTP) hydrolysis returns them to the inactive state. Most members of this superfamily are post-translationally modified and carry isoprenoids at their C-termini, which anchors them to the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F., et al. (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338.

    Article  PubMed  CAS  Google Scholar 

  2. Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J., and Gamblin, S. J.(1997) Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389, 758–762.

    Article  PubMed  CAS  Google Scholar 

  3. Goldberg, J. (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248.

    Article  PubMed  CAS  Google Scholar 

  4. Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D., and Kuriyan, J. (1998) The structural basis of the activation of Ras by Sos. Nature 394, 337–343.

    Article  PubMed  CAS  Google Scholar 

  5. Hoffman, G. R., Nassar, N., and Cerione, R. A. (2000) Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356.

    Article  PubMed  CAS  Google Scholar 

  6. Scheffzek, K., Stephan, I., Jensen, O. N., Illenberger, D., and Gierschik, P. (2000) The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nat. Struct. Biol., 7, 122–126.

    Article  PubMed  CAS  Google Scholar 

  7. Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue.Nature 375, 554–560.

    CAS  Google Scholar 

  8. Huang, L., Hofer, F., Martin, G. S., and Kim, S. H. (1998) Structural basis for the interaction of Ras with RalGDS. Nat. Struct. Biol. 5, 422–426.

    Article  PubMed  CAS  Google Scholar 

  9. Abdul-Manan, N., Aghazadeh, B., Liu, G. A., Majumdar, A., Ouerfelli, O., Siminovitch, K. A., et al. (1999) Structure of Cdc42 in complex with the GTPase-binding domain of the “Wiskott-Aldrich syndrome” protein. Nature 399, 379–383.

    Article  PubMed  CAS  Google Scholar 

  10. Mott, H. R., Owen, D., Nietlispach, D., Lowe, P. N., Manser, E., Lim, L., et al.(1999) Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature 399, 384–388.

    Article  PubMed  CAS  Google Scholar 

  11. Vetter, I. R., Nowak, C., Nishimoto, T., Kuhlmann, J., and Wittinghofer, A. (1999) Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue:implications for nuclear transport. Nature 398, 39–46.

    Article  PubMed  CAS  Google Scholar 

  12. Sprang S. R. (1997) G protein mechanisms: insights from structural analysis.Annu. Rev. Biochem. 66, 639–678.

    Article  CAS  Google Scholar 

  13. Geyer, M. and Wittinghofer, A. (1997) GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Curr.Opin. Struct. Biol. 7, 786–792.

    Article  PubMed  CAS  Google Scholar 

  14. Tucker, J., Sczakiel, G., Feuerstein, J., John, J., Goody, R. S., and Wittinghofer, A.(1986) Expression of p21 proteins in Escherichia coli and stereochemistry of the nucleotide-binding site. EMBO J. 5, 1351–1358.

    PubMed  CAS  Google Scholar 

  15. John, J., Frech, M., and Wittinghofer, A. (1988) Biochemical properties of Ha-ras encoded p21 mutants and mechanism of the autophosphorylation reaction. J. Biol.Chem. 263, 11,792–11,799.

    PubMed  CAS  Google Scholar 

  16. Ostermeier, C. and Brunger, A. T. (1999) Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96, 363–374.

    Article  PubMed  CAS  Google Scholar 

  17. Scherer, A., John, J., Linke, R., Goody, R. S., Wittinghofer, A., Pai, R. R, et al.(1989) Crystallization and preliminary X-ray analysis of the human c-H-rasoncogene product p21 complexed with GTP analogues. J. Mol. Biol. 206, 257–259.

    Article  PubMed  CAS  Google Scholar 

  18. Graham, D. L., Eccleston, J. F., and Lowe, P. N. (1999) The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride. Biochemistry 38, 985–991.

    Article  PubMed  CAS  Google Scholar 

  19. Guo, W., Sutcliffe, M. J., Cerione, R. A., and Oswald, R. E. (1998) Identification of the binding surface on Cdc42Hs for p21-activated kinase. Biochemistry 37, 14,030–14,037.

    Article  PubMed  CAS  Google Scholar 

  20. Leonard, D. A., Satoskar, R. S., Wu, W. J., Bagrodia, S., Cerione, R. A., and Manor, D. (1997) Use of a fluorescence spectroscopic readout to characterize the interactions of Cdc42Hs with its target/effector, mPAK-3. Biochemistry 36, 1173–1180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Smith, S.J.M., Rittinger, K. (2002). Preparation of GTPases for Structural and Biophysical Analysis. In: Manser, E., Leung, T. (eds) GTPase Protocols. Methods in Molecular Biology™, vol 189. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-281-3:013

Download citation

  • DOI: https://doi.org/10.1385/1-59259-281-3:013

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-934-6

  • Online ISBN: 978-1-59259-281-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics