Skip to main content

In Vivo Detection of Transition Metals and Nitrosyl-Heme Complexes Using Ex Vivo Electron Paramagnetic Resonance Spectroscopy

  • Protocol
  • 1000 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 196))

Abstract

Cellular redox environment is a critical determinant of stress-induced cellular responses and the progression of disease (1). Under normal (nonstress) conditions, the cell maintains a strong reducing environment that favors reductive over highly compartmentalized oxidative biochemistry. Exposure of cellular macromolecules to reactive oxygen (ROS) and reactive nitrogen species (RNS) is tightly controlled. Environmental stress can shift the redox balance away from reductive biochemistry however, promoting transition metal activation, and nonprogrammed oxidative and/or nitrosative reactions. Metalcatalyzed oxidative and nitrosative stress have been implicated in the etiology of numerous clinical disorders including inflammation, ischemia-reperfusion injury, rheumatoid arthritis, and aging (1).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schafer, F. Q. and Beuttner, G. R. (2001) Redox state of the cell as viewed through the glutathione disulfide/glutathione couple. Free Radical Bio. Med. 30, 1191–1212.

    Article  CAS  Google Scholar 

  2. Hall, D. M., Buettner, G. R., Matthis, R. D., and Gisolfi, C. V. (1994) Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of ·NO-heme in blood. J. Appl. Physiol. 77(2), 548–553.

    PubMed  CAS  Google Scholar 

  3. Buettner, G. R., Scott, B. D., Kerber, R. E., and Mugge, A. (1991) Free radicals from plastic syringes. Free Radical Biol. Med. 11, 69–70.

    Article  CAS  Google Scholar 

  4. Kregel, K. C., Wall, P. T., and Gisolfi, C. V. (1988) Peripheral vascular responses to hyperthermia in the rat. J. Appl. Physiol. 64(6), 2582–2588.

    PubMed  CAS  Google Scholar 

  5. Westenberger, U., Thanner, S., Ruf, H. H., Gersonde, K., Sutter G., and Trentz, O. (1990) Formation of free radicals and nitric oxide derivative of hemoglobin in rats during endotoxin shock. Free Radical Res. Commun. 11, 167–178.

    Article  CAS  Google Scholar 

  6. Chamulitrat, W., Skrepnik, N. V., and Spitzer, J. J. (1996) Nitrosyl complex formation during endotoxin-induced injury in the rat small intestine. Shock 5(1), 59–65.

    Article  PubMed  CAS  Google Scholar 

  7. Kozlov, A. V., Yegorov, D. U., Vladimirov, Y. A., and Azizova, O. A. (1992) Intracellular free iron in liver tissue and liver homogenate. Free Rad. Biol. Med. 13, 9–16.

    Article  PubMed  CAS  Google Scholar 

  8. Hall, D. M., Oberley, T. D., Moseley, P. M., Buettner, G. R., Oberley, L. W., Weindruch, R. H., and Kregel, K. C. (2000) Caloric restriction improves thermo-tolerance and reduces hyperthermia-induced cellular damage in old rats. FASEB J. (In Press.)

    Google Scholar 

  9. Lancaster, J. R., Jr. and Hibbs, J. B., Jr. (1990) EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Proc. Natl. Acad. Sci. USA 87, 1223–1227.

    Article  PubMed  CAS  Google Scholar 

  10. Stamler, J. S., Singel, D. J., and Loscalzo, J. (1992) Biochemistry of ·NO and its redox activated forms. Science 258, 1898.

    Article  PubMed  CAS  Google Scholar 

  11. Henry, Y., Lepoivre, M., Drapier, J., Ducrocq, C., Boucher, J., and Guissani, A. (1993) EPR characterization of molecular targets for ·NO in mammalian cells and organelles. FASEB J. 7(12), 1124–1134.

    PubMed  CAS  Google Scholar 

  12. Henry, Y., Ducrocq, C., Drapier, J.-C., Servant, D., Pellat, C., and Guissani, A. (1991) Nitric oxide, a biological effector. EPR detection of nitrosyl-iron-protein complexes in whole cells. Eur. Biophys. J. 20(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Hall, D.M., Buettner, G.R. (2002). In Vivo Detection of Transition Metals and Nitrosyl-Heme Complexes Using Ex Vivo Electron Paramagnetic Resonance Spectroscopy. In: Armstrong, D. (eds) Oxidants and Antioxidants. Methods in Molecular Biology™, vol 196. Humana Press. https://doi.org/10.1385/1-59259-274-0:211

Download citation

  • DOI: https://doi.org/10.1385/1-59259-274-0:211

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-851-6

  • Online ISBN: 978-1-59259-274-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics