Skip to main content

Thioredoxin and Redox Regulation of the Nuclear Receptor

  • Protocol
  • 1001 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 196))

Abstract

Oxidative stress evokes various cellular responses including alteration of gene expression to preserve cellular homeostasis (1,2). Thioredoxin (TRX) is a small ubiquitous protein with protein thiol-reducing activity and has been shown to function as a cellular antioxidant buffering system in response to oxidative stress and play essential roles in maintenance of cellular function (3,4). Recently, a growing number of evidence has shown that TRX plays crucial roles in redox regulation of gene expression via either direct or indirect interaction with various transcription factors including NF-κB (5), AP-1 (6), and PEBP2 (7). Alteration in expression and/or subcellular localization of TRX has been indicated to be involved in such redox-dependent control of the transcription factors (8,9), however, precise mechanisms remain unknown.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yu, B. P. (1994) Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74, 139–162.

    PubMed  CAS  Google Scholar 

  2. Demple, B. and Amabile-Cuevas, C. F. (1991) Redox redux: the control of oxidative stress responses. Cell 67, 837–839.

    Article  PubMed  CAS  Google Scholar 

  3. Holmgren, A. (1995) Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3, 239–243.

    Article  PubMed  CAS  Google Scholar 

  4. Holmgren, A. (1985) Thioredoxin. Annu. Rev. Biochem. 54, 237–271.

    Article  PubMed  CAS  Google Scholar 

  5. Schenk, H., Klein, M., Erdbrugger, W., Droge, W., and Schulze-Osthoff, K. (1994) Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-ΚB and AP-1. Proc. Natl. Acad. Sci. USA 91, 1672–1676.

    Article  PubMed  CAS  Google Scholar 

  6. Meyer, M., Schreck, R., and Baeuerle, P. A. (1993) H2O2 and antioxidants have opposite effects on activation of NF-ΚB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12, 2005–2015.

    PubMed  CAS  Google Scholar 

  7. Akamatsu, Y., Ohno, T., Hirota, K., Kagoshima, H., Yodoi, J., and Shigesada, K. (1997) Redox regulation of the DNA binding activity in transcription factor PEBP2. The roles of two conserved cysteine residues. J. Biol. Chem. 272, 14497–14500.

    Article  PubMed  CAS  Google Scholar 

  8. Makino, Y., Yoshikawa, N., Okamoto, K., Hiorota, K., Yodoi, J., Makino, I., and Tanaka, H. (1999) Direct association with thioredoxin allows redox regulation of glucocorticoid receptor function. J. Biol. Chem. 274, 3182–3188.

    Article  PubMed  CAS  Google Scholar 

  9. Hirota, K., Murata, M., Sachi, Y., Nakmura, H., Takeuchi, J., Mori, K., and Yodoi, J. (1999) Distinct roles of thioredoxin in the cytoplasm and in the nucleus. J. Biol. Chem. 274, 27891–27897.

    Article  PubMed  CAS  Google Scholar 

  10. Evans, R. M. (1988) The steroid and thyroid hormone receptor superfamily. Science 240, 889–895.

    Article  PubMed  CAS  Google Scholar 

  11. Beato, M., Herrlich, P., and Schutz, G. (1995) Steroid receptors: many actors in search of a plot. Cell 83, 851–857.

    Article  PubMed  CAS  Google Scholar 

  12. Picard, D. and Ymamoto, K. R. (1987) Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J. 6, 3333–3340.

    PubMed  CAS  Google Scholar 

  13. Simons, S. S.Jr. and Pratt, W. B. (1995) Glucocorticoid receptor thiols and steroid-binding activity. Methods Enzymol. 251, 406–422.

    Article  PubMed  CAS  Google Scholar 

  14. Bodwell, J. E., Holbrook, N. J., and Munck, A. (1984) Sulfhydryl-modifying reagents reversibly inhibit binding of glucocorticoid-receptor complexes to DNA-cellulose. Biochemistry 23, 1392–1398.

    Article  PubMed  CAS  Google Scholar 

  15. Okamoto, K., Tanaka, H., Ogawa, H., Makino, Y., Eguchi, H., Hayashi, S., et al. (1999) Redox-dependent regulation of nuclear import of the glucocoritcoid receptor. J. Biol. Chem. 274, 10363–10371.

    Article  PubMed  CAS  Google Scholar 

  16. Makino Y., Tanaka, H., Dahlman-Wright, K., and Makino, I. (1996) Modulation of glucocorticoid-inducible gene expression by metal ions. Mol. Pharmacol. 49, 612–620.

    PubMed  CAS  Google Scholar 

  17. Makino, Y., Okamoto, K., Yoshikawa, N., Aoshima, M., Hirota, K., Yodoi, J., et al. (1996) Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defence system. J. Clin. Invest. 98, 2469–2477.

    Article  PubMed  CAS  Google Scholar 

  18. Hayashi, S., Hajiro-Nakanishi, K., Makino, Y., Eguchi, H., and Tanaka, H. (1997) Functional modulation of estrogen receptor by redox state with reference to thioredoxin as a mediator. Nucleic Acids Res. 25, 4035–4040.

    Article  PubMed  CAS  Google Scholar 

  19. Taniguchi, Y., Taniguchi-Ueda, Y., Mori, K., and Yodoi, J. (1996) A novel promoter sequence is involved in stress-induced expression of the adult T-cell leukemiaderived factor (ADF)/human thioredoxin (TRX) gene. Nucleic Acids Res. 24, 2746–2752.

    Article  PubMed  CAS  Google Scholar 

  20. Sachi, Y., Hirota, K., Masutani, H., Toda, K., Okamoto, T., Takigawa, M., and Yodoi, J. (1995) Induction of ADF/TRX by oxidative stress in keratinocytes and lymphoid cells. Immunol. Lett. 44, 189–193.

    Article  PubMed  CAS  Google Scholar 

  21. Wakasugi, N., Tagaya, Y., Wakasugi, H., Mitsui, A., Maeda, M., Yodoi, J., and Tursz, T. (1990) Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotrophic virus type I-and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc. Natl. Acad. Sci. USA 87, 8282–8286.

    Article  PubMed  CAS  Google Scholar 

  22. Sasada, T., Iwata, S., Sato, N., Kitaoka, Y., Hirota, K., Nakamura, K., et al. (1996) Redox control of resistence to cis-diamminedichloroplatinum (II) (CDDP). Protective effect of human thioredoxin against CDDP-induced cytotoxicity. J. Clin. Invest. 97, 2268–2276.

    Article  PubMed  CAS  Google Scholar 

  23. Hirota, K., Matsui, M., Iwata, S., Nishiyama, A., Mori, K., and Yodoi, J. (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc. Natl. Acad. Sci. USA 94, 3633–3638.

    Article  PubMed  CAS  Google Scholar 

  24. Nakamura, H., Nakamura, H., and Yodi, J. (1997) Redox regulation of cellular activation. Annu. Rev. Immunol. 15, 351–369.

    Article  PubMed  CAS  Google Scholar 

  25. Schenk, H., Vogt, M., Droge, W., and Schulze-Osthoff, K. (1996) Thioredoxin as a potent costimulus of cytokine expression. J. Immunol. 156, 765–771.

    PubMed  CAS  Google Scholar 

  26. Yokomizo, A., Ono, M., Nanri, H., Makino, Y., Ohga, T., Wada, M., et al. (1995) Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res. 55, 4293–4296.

    PubMed  CAS  Google Scholar 

  27. Matsui, M., Oshima, M., Oshima, H., Takaku, K., Maruyama, T., Yodoi, J., and Taketo, M. (1996) Early embryonic lethality by targeted disruption of the mouse thioredoxin gene. Dev. Biol. 178, 179–185.

    Article  PubMed  CAS  Google Scholar 

  28. Qin, J., Clore, G. M., Kennedy, W. M. P., Huth, J. R., and Gronenborn, A. M. (1995) Solution structure of human thioredoxin in a mixed disulfide intermediate complex with its target peptide from the transcription factor NFкB. Structure 3, 289–297.

    Article  PubMed  CAS  Google Scholar 

  29. Matthews, J. R., Wakasugi, N., Virelizer, J.-L., Yodoi, J., and Hay, R. T. (1992) Thioredoxin regulates the DNA binding activity of NF-кB by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 20, 3821–3830.

    Article  PubMed  CAS  Google Scholar 

  30. Tagaya, Y., Wakasugi, H., Masutani, H., Nakamura, H., Iwata, S., Mitsui, A., et al. (1990) Role of ATL-derived factor (ADF) in the normal and abnormal cellular activation: involvement of dithiol related reduction. Mol. Immunol. 27, 1279–1289.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Makino, Y., Okamoto, K., Tanaka, H. (2002). Thioredoxin and Redox Regulation of the Nuclear Receptor. In: Armstrong, D. (eds) Oxidants and Antioxidants. Methods in Molecular Biology™, vol 196. Humana Press. https://doi.org/10.1385/1-59259-274-0:171

Download citation

  • DOI: https://doi.org/10.1385/1-59259-274-0:171

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-851-6

  • Online ISBN: 978-1-59259-274-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics