Skip to main content

Measurement of Immunoglobulin G Oxidation by Western-Blot Analysis

  • Protocol
Oxidants and Antioxidants

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 196))

  • 1026 Accesses

Abstract

Oxygen radicals are chemical species that have an unpaired electron in their outer orbits. The unpaired electron gives the radical instability and it reacts easily with inorganic or organic chemicals. The three most important species are superoxide, hydrogen peroxide, and hydroxyl ions. The body keeps the system in balance by antioxidants, like vitamin E, ceruloplasmin, and transferrin, which act as scavengers for the oxygen radicals. Enzymes, like superoxide dismutase, catalase, and glutathione peroxidase, reduce oxygen radicals to oxygen and water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halliwell, B. (1987) Oxidants and human diseases: some new concepts. FASEB J. 1, 358–364.

    PubMed  CAS  Google Scholar 

  2. Freeman, B. A. and Crapo, J. D. (1982) Biology of disease: free radicals and tissue injury. Lab. Invest. 47, 412–426.

    PubMed  CAS  Google Scholar 

  3. Slater, T. F. (1984) Free radical mechanisms in tissue injury. Biochem. J. 222, 1–15.

    PubMed  CAS  Google Scholar 

  4. Henson, P. M. and Johnston, R. B., Jr. (1987) Tissue injury in inflammation: oxidants, proteases and cationic proteins. J. Clin. Invest. 79, 669–674.

    Article  PubMed  CAS  Google Scholar 

  5. Richard, M. J., Arnaud, J., Jurkovitz, C., Hachache, T., Meftahi, H., Laporte, F., et al. (1991) Trace elements and lipid peroxidation abnormalities in patients with chronic renal failure. Nephron 57, 10–15.

    Article  PubMed  CAS  Google Scholar 

  6. Dasgupta, A., Hussain, S., and Ahmad, S. (1992) Increased lipid peroxidation in patients on maintenance hemodialysis. Nephron 60, 56–59.

    Article  PubMed  CAS  Google Scholar 

  7. Maggi, E., Bellazzi, R., Falaschi, F., Frattoni, A., Perani, G., Finardi, G., et al. (1994) Enhanced LDL oxidation in uremic patients: an additional mechanism for accelerated atherosclerosis? Kidney Int. 45, 876–883.

    Article  PubMed  CAS  Google Scholar 

  8. Witzum, J. L. (1994) The oxidation hypothesis of atherosclerosis. Lancet 344, 793–795.

    Article  Google Scholar 

  9. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., and Witzum, J. L. (1989) Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  10. Imlay, J. A. and Linn, S. (1988) DNA damage and oxygen radical toxicity. Science 240, 1302–1309.

    Article  PubMed  CAS  Google Scholar 

  11. Oliver, C. N., Ahn, B., Moerman, E. J., Goldstein, S., and Stadtman, E. R. (1987) Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488–5491.

    PubMed  CAS  Google Scholar 

  12. Stadtman, E. R. and Berlett, B. S. (1991) Fenton chemistry: amino acid oxidation. J. Biol. Chem. 266, 17201–17211.

    PubMed  CAS  Google Scholar 

  13. Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., and Floyd, R. A. (1990) Oxidative damage to brain proteins, loss of glutamine synthstase activity and production of free radicals during ischemia/reperfusion injury to gerbil brain. Proc. Natl. Acad. Sci. USA 87, 5144–5147.

    Article  PubMed  CAS  Google Scholar 

  14. Oliver, C. N. (1987) Inactivation of enzymes and oxidative modification of proteins by stimulated neutrophils. Arch. Biochem. Biophys. 253, 62–72.

    Article  PubMed  CAS  Google Scholar 

  15. Margiloff, L., Chaplia, L., Chow, A., Singhal, P. C., and Mattana, J. (1998) Metalcatalyzed oxidation of immunoglobulin G impairs Fc receptor-mediated binding to macrophages. Free Rad. Biol. Med. 25, 7, 780–785.

    Article  PubMed  CAS  Google Scholar 

  16. Levine, R. L., Williams, J. A., Stadtman, E. R., and Shacter, E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233, 346–357.

    Article  PubMed  CAS  Google Scholar 

  17. Shacter, E., Williams, J. A., Lim, M., and Levine, R. L. (1994) Differential susceptibility of plasma proteins to oxidative modification: examination by Western blot immunoassay. Free Rad. Biol. Med. 17, 429–437.

    Article  PubMed  CAS  Google Scholar 

  18. Mattana, J., Margiloff, L., Chaplia, L., Chow, A., and Singhal, P. C. (1998) Metalcatalyzed oxidation of extracellular matrix increases macrophage nitric oxide generation. Kidney Int. 54, 1581–1592.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Chow, A., Ahmed, S., Chaplia, L., Mattana, J. (2002). Measurement of Immunoglobulin G Oxidation by Western-Blot Analysis. In: Armstrong, D. (eds) Oxidants and Antioxidants. Methods in Molecular Biology™, vol 196. Humana Press. https://doi.org/10.1385/1-59259-274-0:163

Download citation

  • DOI: https://doi.org/10.1385/1-59259-274-0:163

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-851-6

  • Online ISBN: 978-1-59259-274-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics