Peptide Vaccination

  • Valentin Meraldi
  • Jackeline F. Romero
  • Giampietro Corradin
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 72)


Vaccination is the most cost-effective measure to control the pathological effects of an infectious agent (1,2). With the combined use of molecular cloning and of modern sequencing methods, the sequence of many protein components present in different infectious agents have been elucidated, opening the way to the design and development of various vaccination strategies which include peptides, proteins and DNA. Peptide vaccination is per se the most simple, straightforward, and, in our opinion, safest approach to vaccination of the world population. For peptide, we intend protein fragments of any length obtained from chemical synthesis (3-5). One drawback of using short peptides is the limitation of the intervention to defined members of the population that carry the major histocompatibility complex (MHC) antigen(s) which the peptides bind to (MHC restriction). This limitation can, in principle, be overcome by using a physical or chemical mixture of short peptides or to lengthen the size of the peptide fragment in order to cover the MHC antigens of the entire population (6,7).


Major Histocompatibility Complex Aluminum Hydroxide Size Exclusion Chromatography Peptide Antigen Peptide Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gander, B., Merkle, H. P., and Corradin, G. (eds.) (1997) Antigen Delivery System. Harwood Academic Publishers, Amsterdam, The Netherlands.Google Scholar
  2. 2.
    State of the World’s Vaccines and Immunization. WHO/UNICEF documen. (1996) WHO/GPV/ 96.04.Google Scholar
  3. 3.
    Merrifield, R. B. (1986) Solid phase synthesis. Science 232, 341–374.CrossRefPubMedGoogle Scholar
  4. 4.
    Atherton, E., Logan, C. J., and Shepard, R. C. (1988) Peptide synthesis. Part II. Procedures for solid phase synthesis using Na-fluorenylmethoxycarbamylamino-acids on polyamide supports: synthesis of substance P and of acyl carrier protein 65-74 decapeptides. J. Chem. Soc. (Lond.) 1, 538.Google Scholar
  5. 5.
    Pennington, M. W. and Dunn, B. M. (eds.) (1994) Peptide Synthesis Protocols. Methods in Molecular Biology, vol. 35. Humana Press, Totowa, NJ.Google Scholar
  6. 6.
    Sinigaglia, F., Guttinger, M., Romagnoli, P., and Takacs, B. (1990) Malaria antigens and MHC restriction. Immunol. Lett. 25, 265–270.CrossRefPubMedGoogle Scholar
  7. 7.
    Hoffman, S. L., Berzofsky, J. A., Isenbarger, D., Zeltser, E., Majarian, W. R., Gross, M., and Ballou, W. R. (1989) Immune response gene regulation of immunity to Plasmodium berghei sporozoites and circumsporozoite protein vaccines. Overcoming genetic restriction with whole organism and subunit vaccines. J Immunol. 142, 3581–3584.PubMedGoogle Scholar
  8. 8.
    Heimbrook, D. C., Saari, W. S., Balishin, N. L., Fisher, T. W., Friedman, A., Kiefer, D. M., et al. (1991) Gastrin releasing peptide antagonists with improved potency and stability. J Med. Chem. 34, 2102–2107.CrossRefPubMedGoogle Scholar
  9. 9.
    Valmori, D., Pessi, A., Bianchi, E., and Corradin, G. (1992) Use of human universal antigenic tetanus toxin T cell epitopes as carriers for human vaccination. J Immunol. 149, 717–721.PubMedGoogle Scholar
  10. 10.
    Renggli, J., Valmori, D., Romero, J. F., Eberl, G., Romero, P., Betschart, B., and Corradin, G. (1995) CD8+T-cell protective immunity induced by immunization with Plasmodium berghei CS protein-derived synthetic peptides: evidence that localization of peptide-specific CTL is crucial for protection against malaria. Immunol. Lett. 46, 199–205.CrossRefPubMedGoogle Scholar
  11. 11.
    Migliorini, P., Betschart, B., and Corradin, G. (1993) Malaria vaccine: immunization of mice with a synthetic T cell helper epitope leads to protective immunity. Eur. J. Immunol. 23, 582–585.CrossRefPubMedGoogle Scholar
  12. 12.
    Blum-Tirouvanziam, U., Beghdadi-Rais, C., Roggero, M. A., Valmori, D., Bertholet, S., Bron, C., Fasel, N., and Corradin, G. (1995) Elicitation of specific cytotoxic T cells by immunization with malaria soluble synthetic polypeptides. J Immunol. 153, 4134–4141.Google Scholar
  13. 13.
    Tam, J. P., Clavijo, P., Lu, Y., Nussenzweig, V., Nussenzweig, R., and Zavala, F. (1990) Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria. J Exp. Med. 171, 299–306.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang, R., Charoenvit, Y., Corradin, G., Porrozzi, R., Hunter, R. L., Glenn, G., et al. (1995) Induction of protective polyclonal antibodies by immunization with a Plasmodium yoelii circumsporozoite protein multiple antigen peptide vaccine. J Immunol. 154, 2784–2793.PubMedGoogle Scholar
  15. 15.
    Wang, R., Charoenvit, Y., Corradin, G., De La Vega, P., Franke, E. D., and Hoffman, S. L. (1996) Protection against malaria by Plasmodium yoelii sporozoite surface protein 2 linear peptide induction of CD4+T cell-and IFN-g-dependant elimination of infected hepatocytes. J Immunol. 157, 4061–4067.PubMedGoogle Scholar
  16. 16.
    Porath, J. and Flodin, P. (1959) Gel filtration: a method for desalting and group separation. Nature 183, 1657–1659.CrossRefPubMedGoogle Scholar
  17. 17.
    Walker, J. M. (ed.) (1994) Basic Protein and Peptide Protocols. Methods in Molecular Biology, vol.32. Humana Press, Totowa, NJ.Google Scholar
  18. 18.
    Dunn, B. M. and Pennington, M. W. (eds.) (1994) Peptide Analysis Protocols. Methods in Molecular Biology, vol. 36. Humana Press, Totowa, NJ.Google Scholar
  19. 19.
    Smith, J. B., Thevenon-Emeric, G., Smith, D. L., and Green, B. (1991) Elucidation of the primary structures of proteins by mass spectrometry. Anal. Biochem. 193, 118–124.CrossRefPubMedGoogle Scholar
  20. 20.
    Stachowiak, K., et al. (1988) Rapid protein sequencing by the enzyme-thermospray LC/MS method. J. Amer. Chem. Soc. 110, 1758–1765.CrossRefGoogle Scholar
  21. 21.
    Stachowiak, K., Otlewski, J., Polanowski, A., and Dyckes, D. F. (1990) Monitoring protein cleavage and concurrent disulfide bond assignment using thermospray LC/MS. Pept. Res. 3, 148–154.PubMedGoogle Scholar
  22. 23.
    Edelhoch, H. (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954.CrossRefPubMedGoogle Scholar
  23. 24.
    Migliorini, P., Boulanger, N., Betschard, B., and Corradin, G. (1990) Plasmodium berghei subunit vaccine: repeat synthetic peptide of circumsporozoite protein comprising T-and B-cell epitopes fail to confer immunity. Scand. J. Immun. 31, 237–242.CrossRefGoogle Scholar
  24. 25.
    Perlaza, B. L., Arevalo-Herrera, M., Brahimi, K., Quintero, G., Palomino, J. C., Gras-Masee, H., et al. (1998) Immunogenicity of four Plasmodium falciparum preerythrocytic antigens in Aotus lemurinus monkeys. Infect. Immun. 66, 3423–3428.Google Scholar
  25. 26.
    Franke, E. D., Corradin, G., and Hoffman, S. L. (1997) Induction of protective CTL responses against the Plasmodium yoelii circumsporozoite protein by immunization with peptides. J. Immunol. 159, 3424–3433.Google Scholar
  26. 27.
    Lawrence, G. W., Saul, A., Giddy, A. J., Kemp, R., and Pye, D. (1997) Phase I trial in humans of an oil-based adjuvant SEPPIC MONTANIDE ISA 720. Vaccine 15, 176–178.CrossRefPubMedGoogle Scholar
  27. 28.
    Pye, D., Vandenberg, K. L., Dyer, S. L., Irving, D. O., Goss, N. H., Woodrow, G. C., et al. (1997) Selection of an adjuvant for vaccination with the malaria antigen, MSA-2. Vaccine 15, 1017–1023.CrossRefPubMedGoogle Scholar
  28. 29.
    Jacobsen, N. E., Fairbrother, W. J., Kensil, C. R., Lim, A., Wheeler, D. A., and Powell, M. F. (1996) Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohydr. Res. 280, 1–14.Google Scholar
  29. 30.
    Cleland, J. L., Kensil, C. R., Lim, A., Jacobsen, N. E., Basa, L., Spellman, M., et al. (1996) Isomerization and formulation stability of the vaccine adjuvant QS-21. J. Pharm. Sci. 85, 22–28.CrossRefPubMedGoogle Scholar
  30. 31.
    Hoffman, S. L., Edelman, R., Bryan, J. P., Schneider, I., Davis, J., Sedegah, M., et al. (1994) Safety, immunogenicity and efficacy of a malaria sporozoite vaccine administered with monophosphoryl lipid A, cell wall skeleton of mycobacteria and squalene as adjuvant. Am. J. Trop. Med. Hyg. 51, 603–612.PubMedGoogle Scholar
  31. 32.
    Onier, N., Hilpert, S., Reveneau, S., Arnould, L., Saint-Giorgio, V., Exbrayat, J. M., et al. (1999) Expression of inducible nitric oxide synthase in tumors in relation with their regression induced by lipid A in rats. Int. J. Cancer. 81, 755–760.CrossRefPubMedGoogle Scholar
  32. 33.
    Chang, M. F., White, J. L., Nail, S. L., and Hem, S. L. (1997) Role of the electrostatic attractive force in the adsorption of proteins by aluminum hydroxide adjuvant. PDAJ. Pharm. Sci. Technol. 51, 25–29.Google Scholar
  33. 34.
    Al-Shakhshir, R., Regnier, F., White, J. L., and Hem, S. L. (1994) Effect of protein adsorption on the surface charge characteristic of aluminum-containing adjuvants. Vaccine 12, 472–474.CrossRefPubMedGoogle Scholar
  34. 35.
    Pellegrini, V., Fineschi, N., Matteucci, G., Marsili, I., Nencioni, L. Puddu, M., et al. (1993) Preparation and immunogenicity of an inactivated hepatitis A vaccine. Vaccine 11, 383–387.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Valentin Meraldi
    • 1
  • Jackeline F. Romero
    • 1
  • Giampietro Corradin
    • 1
  1. 1.Institute of BiochemistryUniversity of LausanneEpalinges

Personalised recommendations