Advertisement

Analysis of Gene Expression by RT-PCR

  • Peter R. Preiser
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 72)

Abstract

To achieve a more complete understanding of malaria parasite biology and its interaction with its host, it is essential to be able to study the transcription and expression of parasite genes. Northern blot analysis and RNase protection assays are commonly used to study gene expression (1). However, both procedures require a significant amount of input RNA. In the case of the human malaria species, only Plasmodium falciparum can be grown in culture (2). This allows the production of a sufficient number of parasites to obtain the necessary amounts of RNA to use in these procedures. Unfortunately, when working with samples obtained from either animals or humans, the amount of RNA obtained is often insufficient to perform even one such experiment.

Keywords

Polymerase Chain Reaction Polymerase Chain Reaction Product Polymerase Chain Reaction Reaction Nest Polymerase Chain Reaction Reverse Transcription Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Plainview, New York.Google Scholar
  2. 2.
    Trager, W. and Jensen, J. B. (1976) Human malaria parasites in continuous culture. Science 193, 673–675.CrossRefPubMedGoogle Scholar
  3. 3.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.CrossRefPubMedGoogle Scholar
  4. 4.
    Snounou, G., Viriyakosol, S., Jarra, W., Thaithong, S., and Brown, K. N. (1993) Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detec tion of a high prevalence of mixed infections. Mol. Biochem. Parasitol. 58, 283–292.CrossRefPubMedGoogle Scholar
  5. 5.
    Snounou, G., Viriyakosol, S., Zhu, X. P., Jarra, W., Pinheiro, L., do Rosario, V. E., et al. (1993) High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 61, 315–320.CrossRefPubMedGoogle Scholar
  6. 6.
    Tirasophon, W., Ponglikitmongkol, M., Wilairat, P., Boonsaeng, V., and Panyim, S. (1991) A novel detection of a single Plasmodium falciparum in infected blood. Biochem. Biophys. Res. Commun. 175, 179–184.CrossRefPubMedGoogle Scholar
  7. 7.
    Smith, J. D., Chitnis, C. E., Craig, A. G., Roberts, D. J., Hudson-Taylor, D. E., Peterson, D. S., et al. (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherentphenotypes of infected erythrocytes. Cell 82, 101–110.CrossRefPubMedGoogle Scholar
  8. 8.
    Preiser, P. R. and Jarra, W. (1998) Plasmodium yoelii: differences in the transcription of the 235-kDa rhoptry protein multigene family in lethal and nonlethal lines. Exp. Parasitol. 89, 50–57.CrossRefPubMedGoogle Scholar
  9. 9.
    Wilson, R. J., Denny, P. W., Preiser, P. R., Rangachari, K., Roberts, K., Roy, A., et al. (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261, 155–172.CrossRefPubMedGoogle Scholar
  10. 10.
    Preiser, P. R., Jarra, W., Capiod, T., and Snounou, G. (1999) A rhoptry-protein-associated mecha-nism of clonal phenotypic variation in rodent malaria. Nature 398, 618–622.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen, Q., Fernandez, V., Sundstrom, A., Schlichtherle, M., Datta, S., Hagblom, P., et al. (1998) Developmental selection of var gene expression in Plasmodium falciparum. Nature 394, 392–395.CrossRefPubMedGoogle Scholar
  12. 12.
    Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.CrossRefPubMedGoogle Scholar
  13. 13.
    Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J., and Rutter, W. J. (1979) Isolation of biologi-cally active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–5299.CrossRefPubMedGoogle Scholar
  14. 14.
    Simmons, D., Woollett, G., Bergin-Cartwright, M., Kay, D., and Scaife, J. (1987) A malaria protein exported into a new compartment within the host erythrocyte. EMBO J. 6, 485–491.PubMedGoogle Scholar
  15. 15.
    Huang, Z., Fasco, M. J., and Kaminsky, L. S. (1996) Optimization of DNase I removal of contaminating DNA from RNA for use in quantitative RNA-PCR. Biotechniques 20, 1012–1014, 1016, 1018-1020.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Peter R. Preiser
    • 1
  1. 1.Division of ParasitologyNational Institute for Medical ResearchLondonUK

Personalised recommendations