Skip to main content

Experimental Embryological Methods for Analysis of Neural Induction in the Amphibian

  • Protocol
Book cover Molecular Embryology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 97))

Abstract

Our objective is to describe and critique some of the experimental embryological preparations used to analyze tissue interactions involved in neural induction in amphibians. The molecular basis of neural induction and the tissue interactions that carry the inductive signals are areas of active research, stimulated by the recent identification of several potential neural inducers (16), availability of regional molecular markers easily visualized with a good whole-mount RNA in situ hybridization method (7), and the work on Hox genes that may have a role in specifying regional differentiation of the vertebrate nervous system (8). These advances demand more of and make more useful the classical embryological manipulations used to characterize the tissue interactions involved in neural induction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hemmati-Brivanlou, A. and Melton, D. A. (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614.

    Article  CAS  PubMed  Google Scholar 

  2. Hemmati-Brivanlou, A. and Melton, D. A. (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281.

    Article  CAS  PubMed  Google Scholar 

  3. Hemmati-Brivanlou, A., Kelly, O. G., and Melton, D. A. (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295.

    Article  CAS  PubMed  Google Scholar 

  4. Smith, W. and Harland, R. (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann Organizer in Xenopus embryos. Cell 70, 829–840.

    Article  CAS  PubMed  Google Scholar 

  5. Lamb, T. M., Knecht, A. K., Smith, W. C., Stachel, S., Economides, A. N., Stahl, N., Yancoplous, G. D., and Harland, R. M. (1993) Neural induction by the secreted polypeptide noggin. Science 266, 650–653.

    Google Scholar 

  6. Harland, R. (1994) Neural induction in Xenopus. Curr. Opin. Gen. Devel. 4, 543–549.

    Article  CAS  Google Scholar 

  7. Harland, R. M. (1991) In situ hybridization: An improved whole-mount method for Xenopus embryos, in Methods in Cell Biology, vol. 36 (Kay, B. and Peng, B., eds.), Academic, San Diego, pp. 685–695.

    Google Scholar 

  8. Krumlauf, R. (1995) Hox genes in vertebrate development. Cell 78, 191–201.

    Article  Google Scholar 

  9. Keller, R. E. (1991). Early embryonic development of Xenopus laevis, in Xenopus laevis: Practical uses in Cell and Molecular Biology, vol. 36 (Kay, B. and Peng, H. B. eds.), Academic, San Diego, pp. 59–111.

    Google Scholar 

  10. Keller, R. E., Shih, J., and Sater, A. K. (1992) The cellular basis of the convergence and extension of the Xenopus neural plate. Dev. Dyn. 193, 199–217.

    Article  CAS  PubMed  Google Scholar 

  11. Keller, R. and Danilchik, M. (1988) Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103, 193–209.

    CAS  PubMed  Google Scholar 

  12. Gerhart, J., Doniach, T., and Stewart, R. (1991) Organizing the Xenopus organizer, in Gastrulation (Keller, R., Clark, W., and Griffin, F., eds.), Plenum, New York, pp. 57–77.

    Chapter  Google Scholar 

  13. Spemann, H. and H. Mangold (1924) Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch. Mikr. Anat. Entw. Mech. 100, 599–638.

    Google Scholar 

  14. Gimlich, R. and Cooke, J. (1993) Cell lineage and induction of second nervous systems in amphibian development. Nature 306, 471–473.

    Article  Google Scholar 

  15. Keller, R. E. (1981) An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J. Exp. Zool. 216, 81–101.

    Article  CAS  PubMed  Google Scholar 

  16. Hardin, J. and Keller, R. (1988) The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103, 211–230.

    CAS  PubMed  Google Scholar 

  17. Nieuwkoop, P. D. and Faber, J. (1967) Normal Table of Xenopus laevis (Daudin). North-Holland Publishing, Amsterdam.

    Google Scholar 

  18. Keller, R. E. (1978) Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis. J. Morph. 157, 223–248.

    Article  Google Scholar 

  19. Keller, R. E. (1980) The cellular basis of epiboly: An SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. Exp. Morph. 60, 201–234.

    CAS  PubMed  Google Scholar 

  20. Nieuwkoop P. and Florshutz, P. (1950) Quelques caractères spéciaux de la gastrulation et de la neurulation de l’oeuf de Xenopus laevis, Daud. et de quelques autres Anoures. 1ère partie.—Ètude descriptive. Arch. Biol. (Liège) 61, 113–150.

    Google Scholar 

  21. Keller, R. E. (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Develop. Biol. 42, 222–241.

    Article  CAS  PubMed  Google Scholar 

  22. Keller, R. E (1976) Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Develop. Biol. 51, 118–137.

    Article  CAS  PubMed  Google Scholar 

  23. Nakatsuji, N. (1975) Studies on the gastrulation of amphibian embyros: cell movement during gastrulation in Xenopus laevis embryos. Wilhelm Roux’ Arch. 178, 1–14.

    Article  Google Scholar 

  24. Cho, K. W. Y., Blumberg, B., Steinbeisser, H., and De Robertis, E. M. (1991) Molecular nature of Spemann’s Organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120.

    Article  CAS  PubMed  Google Scholar 

  25. Blitz, I. and Cho, K. (1995) Anterior neuroectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development 121, 993–1004.

    CAS  PubMed  Google Scholar 

  26. Bouwmeester, T., Sung-Hyun, K., Sasai, Y., Lu, B., and DeRobertis, E. (1996) Cerberus is a head-inducing secretal factor expressed in the anterior endoderm of Spiemann’s Organizer. Nature 382, 595–601.

    Article  CAS  PubMed  Google Scholar 

  27. Vodicka, M. and Gerhart, J. (1995) Blastomere contributions and domains of gene expression in the Spemann Organizer of Xenopus laevis. Development 121, 3505–3518.

    CAS  PubMed  Google Scholar 

  28. Bauer, D. V., Huang, S., and Moody, S. (1994) The cleavage stage origins of Spemann’s Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Development 120, 1179–1189.

    CAS  PubMed  Google Scholar 

  29. Keller, R., Shih, J., and Wilson, P. (1991) Cell motility, control and function of convergence and extension during gastrulation of Xenopus, in Gastrulation: Movements, Patterns, and Molecules (Keller, R, Clark, W., and Griffin, F. eds.), Plenum Press, New York, pp. 101–119.

    Chapter  Google Scholar 

  30. Keller, R., Shih, J., Wilson, P., and Sater, A. (1991) Pattern and function of cell motility and cell interactions during convergence and extension in Xenopus, in Cell-Cell Interactions in Early Development, 49th Symp. Soc. Develop. Biol. (Gerhart, J. C., ed.), Wiley-Liss, New York, pp. 31–62.

    Google Scholar 

  31. Spemann, H. (1938) Embryonic Development and Induction. Yale University Press, New Haven

    Google Scholar 

  32. Nieuwkoop P. D., Boterenbrod, E. C., Kremer, A., Bloemsma, F., Hosessels, E., and Verheyen, F. (1952) Activation and organization of the central nervous system in Amphibians. J. Exp. Zool. 120, 1–108.

    Article  Google Scholar 

  33. van Stratten, H. M. V., and Hekking, J. W. M., Wiertz-hoessels, E. J. L. M., Thors, F., and Drukker, J. (1988) Effect of the notochord on the differentiation of the floorplate area in the neural tube of the chick embryo. Anat. Embryol. 177, 317–324.

    Article  Google Scholar 

  34. Smith, J. L. and Schoenwolf, G. C. (1989) Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J. Exp. Zool. 250, 49–62.

    Article  CAS  PubMed  Google Scholar 

  35. Sive, H., Hattori, K., and Weintraub, H. (1989) Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 58, 171–180.

    Article  CAS  PubMed  Google Scholar 

  36. Placzek, M., Tessier-Lavigne, M., Yamada, T., Jessell, T., and Dodd, J. (1990) Mesodermal control of neural cell identity: floor plate induction by the notochord. Science 250, 985–988.

    Article  CAS  PubMed  Google Scholar 

  37. Yamada, T., Placzek, M., Tanaka, H., Dodd, J., and Jessell, T. M. (1991) Control of cell pattern in the developing nervous system: Polarizing activity of the floor plate and notochord. Cell 64, 635–647.

    Article  CAS  PubMed  Google Scholar 

  38. Saha, M. and Grainger, R. (1992) A liabile period in the determination of the anterior-posterior axis during early neural development in Xenopus. Neuron 8, 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  39. Keller, R. and R. Winklbauer (1992) The cellular basis of amphibian gastrulation, in Current Topics in Developmental Biology, vol. 27 (Pedersen, R., ed.), Academic, New York, pp. 39–89.

    Google Scholar 

  40. Shih, J. and Keller, R. E. (1992) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116, 901–914.

    CAS  PubMed  Google Scholar 

  41. Winklbauer, R. Mesodermal cell migration during Xenopus gastrulation. Dev. Biol. 142, 155–168.

    Google Scholar 

  42. Winklbauer, R., Selchow, A., Nagel, M., Stoltz, C., and Angres, B. (1991) Mesoderm cell migration in the Xenopus gastrula, in Gastrulation: Movements, Patterns, and Molecules (Keller, R., Clark, W., and Griffin, F., eds.), Plenum, New York, pp. 147–168.

    Chapter  Google Scholar 

  43. Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D., and Herrmannn, B. (1991) Expression of the Xenopus homolog of Brachyury (T) is an immediateearly response to mesoderm induction. Cell 67, 79–87.

    Article  CAS  PubMed  Google Scholar 

  44. Kushner, P. D. (1984) A library of monoclonal antibodies to Torpedo cholinergic synaptosomes. J. Neurochem. 43, 775–786.

    Article  CAS  PubMed  Google Scholar 

  45. Bolce, M. E., Hemmati-Brivanlou, A., Kushner, P. D., and Harland, R. M. (1992) Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin. Development 115, 673–680.

    Google Scholar 

  46. Kintner, C. R. and Brockes, J. (1984) Monoclonal antibodies identify blastemal cells derived from differentiating muscle in newt limb regeneration. Nature (London) 308, 67–69.

    Article  CAS  Google Scholar 

  47. Shih, J. and Keller, R. E. (1992) Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116, 915–930.

    CAS  PubMed  Google Scholar 

  48. Domingo, C. and Keller, R. (1995) Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis. Development 121, 3311–3321.

    CAS  PubMed  Google Scholar 

  49. Akers, R., Phillips, C., and Wessels, N. (1986) Expression of an epidermal antigen used to study tissue induction in the early Xenopus embryo. Science 231, 613–616.

    Article  CAS  PubMed  Google Scholar 

  50. London, C., Akers, R., and Phillips, C. (1988) Expression of Ep-1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation. Devel. Biol. 129, 380–389.

    Article  CAS  Google Scholar 

  51. Savage, R. and Phillips, C. (1989) Signals from the dorsal blastopore region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis. Dev. Biol. 132, 157–168.

    Article  Google Scholar 

  52. Sokol, S. and Melton, D. (1991) Pre-existent pattern in Xenopus animal pole cells revealed by induction with activin. Nature 351, 409–411.

    Article  CAS  PubMed  Google Scholar 

  53. Keller, R. E., Shih, J., Sater, A. K. and Moreno, C. (1992) Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Dev. Dynam. 193, 218–234.

    Article  CAS  Google Scholar 

  54. Doniach, T., Phillips, C. R., and Gerhart, J. C. (1992) Planar induction of antero-posterior pattern in the developing central nervous system of Xenopus laevis. Science 257, 542–545.

    Article  CAS  PubMed  Google Scholar 

  55. Otte, P. and Moon, R. (1992) Protein kinase C isozymes have distinct roles in neural induction and competence in Xenopus. Cell 68, 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  56. Wilson, P. A. and Hemmati-Brivalou, A. (1995) Induction of epidermis and inhibition of neural fate by BMP-4. Nature 376, 331–334.

    Article  CAS  PubMed  Google Scholar 

  57. Harland, R. (1995) The transforming growth factor b family and induction of the vertebrate mesoderm: bone morphogenetic proteins are ventral inducers. Proc. Natl. Acad. Sci. USA 91, 10,243–10,246.

    Article  Google Scholar 

  58. Moury, D. and Jacobson, A. (1989) Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl. Dev. Biol. 133, 44–57.

    Article  CAS  PubMed  Google Scholar 

  59. Moury, D. and Jacobson, A. (1990) The origins of the neural crest cells in the axolotl. Devel. Biol. 141, 243–253.

    Article  CAS  Google Scholar 

  60. Jacobson, A. and Moury, J. D. (1995) Tissue boundaries and cell behavior during neurulation. Dev. Biol. 171, 98–110.

    Article  CAS  PubMed  Google Scholar 

  61. Liem, K., Jr., Tremmi, G., Roelink, H., and Jessell, T. (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979.

    Article  CAS  PubMed  Google Scholar 

  62. Selleck, M. and Bronner-Fraser, M. (1995) Origins of the avian neural crest: the role of neural plate-epidermal interactions. Development 121, 525–538.

    CAS  PubMed  Google Scholar 

  63. Scharf, S. and Gerhart, J. (1983) Axis determination in eggs of Xenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure, and ultraviolet irradiation. Devel. Biol. 99, 75–87.

    Article  CAS  Google Scholar 

  64. Kay, B. K. and Peng, H. B. (1991) Xenopus laevis: Practical Uses in Cell and Molecular Biology, vol. 36, Academic, San Diego.

    Google Scholar 

  65. Gurdon, J. (1977) Methods for nuclear transplantation in amphibia. Meth. Cell Biol. 16, 125–139.

    Article  CAS  Google Scholar 

  66. Sater, A. K., Steinhardt R. A., and Keller R. (1993) Induction of neuronal differentiation by planar signals in Xenopus embryos. Devel. Dynam. 197, 268–280.

    Article  CAS  Google Scholar 

  67. Keller, R. E., Danilchik, M., Gimlich, R., and Shih, J. (1985) Convergent extension by cell intercalation during gastrulation of Xenopus laevis, in Molecular Determinants of Animal Form, UCLA Symposia on Molecular and Cellular Biology, New Series 31 (Edelman, G. M., ed.), Liss, New York, pp. 111–141.

    Google Scholar 

  68. Keller, R. E., Danilchik, M., Gimlich, R., and Shih, J. (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89(Suppl.), 185–209.

    PubMed  Google Scholar 

  69. Gillespie, R. (1983) The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos. J. Physiol. 344, 359–377.

    CAS  PubMed  Google Scholar 

  70. Shih, J. and Keller, R. (1992) The epithelium of the dorsal marginal zone of Xenopus has organizer properties. Development 116, 887–899.

    CAS  PubMed  Google Scholar 

  71. Wilson, P. A. and Keller, R. E. (1991) Cell rearrangement during gastrulation of Xenopus: direct observation of cultured explants. Development 112, 289–305.

    CAS  PubMed  Google Scholar 

  72. Holtfreter, J. (1943) Properties and function of the surface coat in amphibian embryos. J. Exp. Zool. 93, 251–323.

    Article  Google Scholar 

  73. Holtfreter, J. (1943) A study of the mechanics of gastrulation. Part I. J. Exp. Zool. 94, 261–318.

    Article  Google Scholar 

  74. Holtfreter, J. (1944) A study of the mechanics of gastrulation. Part II. J. Exp. Zool. 95, 171–212.

    Article  Google Scholar 

  75. Kirschner, M. and Hara, K. (1980) A new method of local vital staining of amphibian embryos using ficoll and “crystals” of Nile Red. Mikroskopie 36, 12–15.

    CAS  PubMed  Google Scholar 

  76. Gerhart, J., Ubbels, G., Black, S., Hara, K., and Kirschner, M. (1981) A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature 292, 511–516.

    Article  CAS  PubMed  Google Scholar 

  77. Kintner, C. R. and Melton, D. A. (1987) Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development 99, 311–325.

    CAS  PubMed  Google Scholar 

  78. Dixon, J. and Kintner, C. R. (1989) Cellular contacts required for neural induction in Xenopus embryos: evidence for two signals. Development 106, 749–757.

    CAS  PubMed  Google Scholar 

  79. Papalopulu, N. and Kintner, C. (1993) Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals. Development 117, 961–975.

    CAS  PubMed  Google Scholar 

  80. Holtfreter, J. (1933) Die totale Exogastrulation, eine Selbstablosung des Ektoderms vom Entomesoderm. Roux’ Arch. Entw. Mech. 129, 669–793.

    Article  Google Scholar 

  81. Poznanski, A. and Keller, R. (1997) The role of planar and early vertical signaling in patterning and expression of Hoxb-1 in Xenopus. Dev. Biol. 189, 256–269.

    Article  CAS  PubMed  Google Scholar 

  82. Ruiz i Altaba, A. (1990) Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm. Development 108, 67–80.

    Google Scholar 

  83. Ruiz i Altaba, A. (1992) Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Development 115, 67–80.

    Google Scholar 

  84. Keller, R. E. (1986) The cellular basis of amphibian gastrulation, in Developmental Biology: A Comprehensive Synthesis, vol. 2 (Browder, L., ed.), Plenum, New York, pp. 241–327.

    Google Scholar 

  85. Lamb, T. M. (1995) Neural induction and patterning in Xenopus: The role of the dorsal mesoderm and secreted molecules derived from it. Ph.D. Thesis, University of California, Berkeley, CA.

    Google Scholar 

  86. Vogt, W. (1929) Gestaltanalyse am Amphibienkein mit ortlicher Vitalfarbung. II. Teil. Gastrulation und Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux Arch. EntwMech. Org. 120, 384–706.

    Article  Google Scholar 

  87. Jacobson, A. and Gordon, R. (1976) Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. J. Exp. Zool. 197, 191–246.

    Article  CAS  PubMed  Google Scholar 

  88. Jacobson, A. (1981) Morphogenesis of the neural plate and tube, in Morphogenesis and Pattern Formation (Connelley, T. G., Brinkley, L., and Carlson, B, eds.), Wiley, New York, pp. 223–263.

    Google Scholar 

  89. Wilson, P. A., Oster, G. M., and Keller, R. (1989) Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants. Development 105, 155–166.

    CAS  PubMed  Google Scholar 

  90. Elul, T., Koehl, M., and Keller, R. (1995) Cellular mechanism of neural convergence and extension. J. Cell Biol. H-49 (abstract).

    Google Scholar 

  91. Lehman, F. E. (1932) Die Beteiligung von Implantats-und Wirtsgewebe bei der Gastrulation und Neurulation inducierter Embryonalanlagen. Wilhelm Roux Arch. Entw.-Mech. Org. 125, 566–639.

    Article  Google Scholar 

  92. Eagleson, G. and Harris, W. (1989) Mapping the presumptive brain regions in the neural plate of Xenopus laevis. J. Neurology 21, 427–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Keller, R., Poznanski, A., Elul, T. (1999). Experimental Embryological Methods for Analysis of Neural Induction in the Amphibian. In: Sharpe, P.T., Mason, I. (eds) Molecular Embryology. Methods in Molecular Biology™, vol 97. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-270-8:351

Download citation

  • DOI: https://doi.org/10.1385/1-59259-270-8:351

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-387-0

  • Online ISBN: 978-1-59259-270-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics