Experimental Embryological Methods for Analysis of Neural Induction in the Amphibian

  • Ray Keller
  • Ann Poznanski
  • Tamira Elul
Part of the Methods in Molecular Biology™ book series (MIMB, volume 97)

Abstract

Our objective is to describe and critique some of the experimental embryological preparations used to analyze tissue interactions involved in neural induction in amphibians. The molecular basis of neural induction and the tissue interactions that carry the inductive signals are areas of active research, stimulated by the recent identification of several potential neural inducers (1, 2, 3, 4, 5, 6), availability of regional molecular markers easily visualized with a good whole-mount RNA in situ hybridization method (7), and the work on Hox genes that may have a role in specifying regional differentiation of the vertebrate nervous system (8). These advances demand more of and make more useful the classical embryological manipulations used to characterize the tissue interactions involved in neural induction.

Keywords

Burner Clay Migration Depression Albumin 

References

  1. 1.
    Hemmati-Brivanlou, A. and Melton, D. A. (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614.CrossRefPubMedGoogle Scholar
  2. 2.
    Hemmati-Brivanlou, A. and Melton, D. A. (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281.CrossRefPubMedGoogle Scholar
  3. 3.
    Hemmati-Brivanlou, A., Kelly, O. G., and Melton, D. A. (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295.CrossRefPubMedGoogle Scholar
  4. 4.
    Smith, W. and Harland, R. (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann Organizer in Xenopus embryos. Cell 70, 829–840.CrossRefPubMedGoogle Scholar
  5. 5.
    Lamb, T. M., Knecht, A. K., Smith, W. C., Stachel, S., Economides, A. N., Stahl, N., Yancoplous, G. D., and Harland, R. M. (1993) Neural induction by the secreted polypeptide noggin. Science 266, 650–653.Google Scholar
  6. 6.
    Harland, R. (1994) Neural induction in Xenopus. Curr. Opin. Gen. Devel. 4, 543–549.CrossRefGoogle Scholar
  7. 7.
    Harland, R. M. (1991) In situ hybridization: An improved whole-mount method for Xenopus embryos, in Methods in Cell Biology, vol. 36 (Kay, B. and Peng, B., eds.), Academic, San Diego, pp. 685–695.Google Scholar
  8. 8.
    Krumlauf, R. (1995) Hox genes in vertebrate development. Cell 78, 191–201.CrossRefGoogle Scholar
  9. 9.
    Keller, R. E. (1991). Early embryonic development of Xenopus laevis, in Xenopus laevis: Practical uses in Cell and Molecular Biology, vol. 36 (Kay, B. and Peng, H. B. eds.), Academic, San Diego, pp. 59–111.Google Scholar
  10. 10.
    Keller, R. E., Shih, J., and Sater, A. K. (1992) The cellular basis of the convergence and extension of the Xenopus neural plate. Dev. Dyn. 193, 199–217.CrossRefPubMedGoogle Scholar
  11. 11.
    Keller, R. and Danilchik, M. (1988) Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103, 193–209.PubMedGoogle Scholar
  12. 12.
    Gerhart, J., Doniach, T., and Stewart, R. (1991) Organizing the Xenopus organizer, in Gastrulation (Keller, R., Clark, W., and Griffin, F., eds.), Plenum, New York, pp. 57–77.CrossRefGoogle Scholar
  13. 13.
    Spemann, H. and H. Mangold (1924) Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch. Mikr. Anat. Entw. Mech. 100, 599–638.Google Scholar
  14. 14.
    Gimlich, R. and Cooke, J. (1993) Cell lineage and induction of second nervous systems in amphibian development. Nature 306, 471–473.CrossRefGoogle Scholar
  15. 15.
    Keller, R. E. (1981) An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J. Exp. Zool. 216, 81–101.CrossRefPubMedGoogle Scholar
  16. 16.
    Hardin, J. and Keller, R. (1988) The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103, 211–230.PubMedGoogle Scholar
  17. 17.
    Nieuwkoop, P. D. and Faber, J. (1967) Normal Table of Xenopus laevis (Daudin). North-Holland Publishing, Amsterdam.Google Scholar
  18. 18.
    Keller, R. E. (1978) Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis. J. Morph. 157, 223–248.CrossRefGoogle Scholar
  19. 19.
    Keller, R. E. (1980) The cellular basis of epiboly: An SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. Exp. Morph. 60, 201–234.PubMedGoogle Scholar
  20. 20.
    Nieuwkoop P. and Florshutz, P. (1950) Quelques caractères spéciaux de la gastrulation et de la neurulation de l’oeuf de Xenopus laevis, Daud. et de quelques autres Anoures. 1ère partie.—Ètude descriptive. Arch. Biol. (Liège) 61, 113–150.Google Scholar
  21. 21.
    Keller, R. E. (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Develop. Biol. 42, 222–241.CrossRefPubMedGoogle Scholar
  22. 22.
    Keller, R. E (1976) Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer. Develop. Biol. 51, 118–137.CrossRefPubMedGoogle Scholar
  23. 23.
    Nakatsuji, N. (1975) Studies on the gastrulation of amphibian embyros: cell movement during gastrulation in Xenopus laevis embryos. Wilhelm Roux’ Arch. 178, 1–14.CrossRefGoogle Scholar
  24. 24.
    Cho, K. W. Y., Blumberg, B., Steinbeisser, H., and De Robertis, E. M. (1991) Molecular nature of Spemann’s Organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120.CrossRefPubMedGoogle Scholar
  25. 25.
    Blitz, I. and Cho, K. (1995) Anterior neuroectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development 121, 993–1004.PubMedGoogle Scholar
  26. 25a.
    Bouwmeester, T., Sung-Hyun, K., Sasai, Y., Lu, B., and DeRobertis, E. (1996) Cerberus is a head-inducing secretal factor expressed in the anterior endoderm of Spiemann’s Organizer. Nature 382, 595–601.CrossRefPubMedGoogle Scholar
  27. 26.
    Vodicka, M. and Gerhart, J. (1995) Blastomere contributions and domains of gene expression in the Spemann Organizer of Xenopus laevis. Development 121, 3505–3518.PubMedGoogle Scholar
  28. 27.
    Bauer, D. V., Huang, S., and Moody, S. (1994) The cleavage stage origins of Spemann’s Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Development 120, 1179–1189.PubMedGoogle Scholar
  29. 28.
    Keller, R., Shih, J., and Wilson, P. (1991) Cell motility, control and function of convergence and extension during gastrulation of Xenopus, in Gastrulation: Movements, Patterns, and Molecules (Keller, R, Clark, W., and Griffin, F. eds.), Plenum Press, New York, pp. 101–119.CrossRefGoogle Scholar
  30. 29.
    Keller, R., Shih, J., Wilson, P., and Sater, A. (1991) Pattern and function of cell motility and cell interactions during convergence and extension in Xenopus, in Cell-Cell Interactions in Early Development, 49th Symp. Soc. Develop. Biol. (Gerhart, J. C., ed.), Wiley-Liss, New York, pp. 31–62.Google Scholar
  31. 30.
    Spemann, H. (1938) Embryonic Development and Induction. Yale University Press, New HavenGoogle Scholar
  32. 31.
    Nieuwkoop P. D., Boterenbrod, E. C., Kremer, A., Bloemsma, F., Hosessels, E., and Verheyen, F. (1952) Activation and organization of the central nervous system in Amphibians. J. Exp. Zool. 120, 1–108.CrossRefGoogle Scholar
  33. 32.
    van Stratten, H. M. V., and Hekking, J. W. M., Wiertz-hoessels, E. J. L. M., Thors, F., and Drukker, J. (1988) Effect of the notochord on the differentiation of the floorplate area in the neural tube of the chick embryo. Anat. Embryol. 177, 317–324.CrossRefGoogle Scholar
  34. 33.
    Smith, J. L. and Schoenwolf, G. C. (1989) Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J. Exp. Zool. 250, 49–62.CrossRefPubMedGoogle Scholar
  35. 34.
    Sive, H., Hattori, K., and Weintraub, H. (1989) Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 58, 171–180.CrossRefPubMedGoogle Scholar
  36. 35.
    Placzek, M., Tessier-Lavigne, M., Yamada, T., Jessell, T., and Dodd, J. (1990) Mesodermal control of neural cell identity: floor plate induction by the notochord. Science 250, 985–988.CrossRefPubMedGoogle Scholar
  37. 36.
    Yamada, T., Placzek, M., Tanaka, H., Dodd, J., and Jessell, T. M. (1991) Control of cell pattern in the developing nervous system: Polarizing activity of the floor plate and notochord. Cell 64, 635–647.CrossRefPubMedGoogle Scholar
  38. 37.
    Saha, M. and Grainger, R. (1992) A liabile period in the determination of the anterior-posterior axis during early neural development in Xenopus. Neuron 8, 1003–1014.CrossRefPubMedGoogle Scholar
  39. 38.
    Keller, R. and R. Winklbauer (1992) The cellular basis of amphibian gastrulation, in Current Topics in Developmental Biology, vol. 27 (Pedersen, R., ed.), Academic, New York, pp. 39–89.Google Scholar
  40. 39.
    Shih, J. and Keller, R. E. (1992) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116, 901–914.PubMedGoogle Scholar
  41. 40.
    Winklbauer, R. Mesodermal cell migration during Xenopus gastrulation. Dev. Biol. 142, 155–168.Google Scholar
  42. 41.
    Winklbauer, R., Selchow, A., Nagel, M., Stoltz, C., and Angres, B. (1991) Mesoderm cell migration in the Xenopus gastrula, in Gastrulation: Movements, Patterns, and Molecules (Keller, R., Clark, W., and Griffin, F., eds.), Plenum, New York, pp. 147–168.CrossRefGoogle Scholar
  43. 42.
    Smith, J. C., Price, B. M. J., Green, J. B. A., Weigel, D., and Herrmannn, B. (1991) Expression of the Xenopus homolog of Brachyury (T) is an immediateearly response to mesoderm induction. Cell 67, 79–87.CrossRefPubMedGoogle Scholar
  44. 43.
    Kushner, P. D. (1984) A library of monoclonal antibodies to Torpedo cholinergic synaptosomes. J. Neurochem. 43, 775–786.CrossRefPubMedGoogle Scholar
  45. 44.
    Bolce, M. E., Hemmati-Brivanlou, A., Kushner, P. D., and Harland, R. M. (1992) Ventral ectoderm of Xenopus forms neural tissue, including hindbrain, in response to activin. Development 115, 673–680.Google Scholar
  46. 45.
    Kintner, C. R. and Brockes, J. (1984) Monoclonal antibodies identify blastemal cells derived from differentiating muscle in newt limb regeneration. Nature (London) 308, 67–69.CrossRefGoogle Scholar
  47. 46.
    Shih, J. and Keller, R. E. (1992) Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116, 915–930.PubMedGoogle Scholar
  48. 47.
    Domingo, C. and Keller, R. (1995) Induction of notochord cell intercalation behavior and differentiation by progressive signals in the gastrula of Xenopus laevis. Development 121, 3311–3321.PubMedGoogle Scholar
  49. 48.
    Akers, R., Phillips, C., and Wessels, N. (1986) Expression of an epidermal antigen used to study tissue induction in the early Xenopus embryo. Science 231, 613–616.CrossRefPubMedGoogle Scholar
  50. 49.
    London, C., Akers, R., and Phillips, C. (1988) Expression of Ep-1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation. Devel. Biol. 129, 380–389.CrossRefGoogle Scholar
  51. 50.
    Savage, R. and Phillips, C. (1989) Signals from the dorsal blastopore region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis. Dev. Biol. 132, 157–168.CrossRefGoogle Scholar
  52. 51.
    Sokol, S. and Melton, D. (1991) Pre-existent pattern in Xenopus animal pole cells revealed by induction with activin. Nature 351, 409–411.CrossRefPubMedGoogle Scholar
  53. 52.
    Keller, R. E., Shih, J., Sater, A. K. and Moreno, C. (1992) Planar induction of convergence and extension of the neural plate by the organizer of Xenopus. Dev. Dynam. 193, 218–234.CrossRefGoogle Scholar
  54. 53.
    Doniach, T., Phillips, C. R., and Gerhart, J. C. (1992) Planar induction of antero-posterior pattern in the developing central nervous system of Xenopus laevis. Science 257, 542–545.CrossRefPubMedGoogle Scholar
  55. 54.
    Otte, P. and Moon, R. (1992) Protein kinase C isozymes have distinct roles in neural induction and competence in Xenopus. Cell 68, 1021–1029.CrossRefPubMedGoogle Scholar
  56. 55.
    Wilson, P. A. and Hemmati-Brivalou, A. (1995) Induction of epidermis and inhibition of neural fate by BMP-4. Nature 376, 331–334.CrossRefPubMedGoogle Scholar
  57. 56.
    Harland, R. (1995) The transforming growth factor b family and induction of the vertebrate mesoderm: bone morphogenetic proteins are ventral inducers. Proc. Natl. Acad. Sci. USA 91, 10,243–10,246.CrossRefGoogle Scholar
  58. 57.
    Moury, D. and Jacobson, A. (1989) Neural fold formation at newly created boundaries between neural plate and epidermis in the axolotl. Dev. Biol. 133, 44–57.CrossRefPubMedGoogle Scholar
  59. 58.
    Moury, D. and Jacobson, A. (1990) The origins of the neural crest cells in the axolotl. Devel. Biol. 141, 243–253.CrossRefGoogle Scholar
  60. 59.
    Jacobson, A. and Moury, J. D. (1995) Tissue boundaries and cell behavior during neurulation. Dev. Biol. 171, 98–110.CrossRefPubMedGoogle Scholar
  61. 60.
    Liem, K., Jr., Tremmi, G., Roelink, H., and Jessell, T. (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979.CrossRefPubMedGoogle Scholar
  62. 61.
    Selleck, M. and Bronner-Fraser, M. (1995) Origins of the avian neural crest: the role of neural plate-epidermal interactions. Development 121, 525–538.PubMedGoogle Scholar
  63. 62.
    Scharf, S. and Gerhart, J. (1983) Axis determination in eggs of Xenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure, and ultraviolet irradiation. Devel. Biol. 99, 75–87.CrossRefGoogle Scholar
  64. 63.
    Kay, B. K. and Peng, H. B. (1991) Xenopus laevis: Practical Uses in Cell and Molecular Biology, vol. 36, Academic, San Diego.Google Scholar
  65. 64.
    Gurdon, J. (1977) Methods for nuclear transplantation in amphibia. Meth. Cell Biol. 16, 125–139.CrossRefGoogle Scholar
  66. 65.
    Sater, A. K., Steinhardt R. A., and Keller R. (1993) Induction of neuronal differentiation by planar signals in Xenopus embryos. Devel. Dynam. 197, 268–280.CrossRefGoogle Scholar
  67. 66.
    Keller, R. E., Danilchik, M., Gimlich, R., and Shih, J. (1985) Convergent extension by cell intercalation during gastrulation of Xenopus laevis, in Molecular Determinants of Animal Form, UCLA Symposia on Molecular and Cellular Biology, New Series 31 (Edelman, G. M., ed.), Liss, New York, pp. 111–141.Google Scholar
  68. 67.
    Keller, R. E., Danilchik, M., Gimlich, R., and Shih, J. (1985) The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89(Suppl.), 185–209.PubMedGoogle Scholar
  69. 68.
    Gillespie, R. (1983) The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos. J. Physiol. 344, 359–377.PubMedGoogle Scholar
  70. 69.
    Shih, J. and Keller, R. (1992) The epithelium of the dorsal marginal zone of Xenopus has organizer properties. Development 116, 887–899.PubMedGoogle Scholar
  71. 70.
    Wilson, P. A. and Keller, R. E. (1991) Cell rearrangement during gastrulation of Xenopus: direct observation of cultured explants. Development 112, 289–305.PubMedGoogle Scholar
  72. 71.
    Holtfreter, J. (1943) Properties and function of the surface coat in amphibian embryos. J. Exp. Zool. 93, 251–323.CrossRefGoogle Scholar
  73. 72.
    Holtfreter, J. (1943) A study of the mechanics of gastrulation. Part I. J. Exp. Zool. 94, 261–318.CrossRefGoogle Scholar
  74. 73.
    Holtfreter, J. (1944) A study of the mechanics of gastrulation. Part II. J. Exp. Zool. 95, 171–212.CrossRefGoogle Scholar
  75. 74.
    Kirschner, M. and Hara, K. (1980) A new method of local vital staining of amphibian embryos using ficoll and “crystals” of Nile Red. Mikroskopie 36, 12–15.PubMedGoogle Scholar
  76. 75.
    Gerhart, J., Ubbels, G., Black, S., Hara, K., and Kirschner, M. (1981) A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature 292, 511–516.CrossRefPubMedGoogle Scholar
  77. 76.
    Kintner, C. R. and Melton, D. A. (1987) Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction. Development 99, 311–325.PubMedGoogle Scholar
  78. 77.
    Dixon, J. and Kintner, C. R. (1989) Cellular contacts required for neural induction in Xenopus embryos: evidence for two signals. Development 106, 749–757.PubMedGoogle Scholar
  79. 78.
    Papalopulu, N. and Kintner, C. (1993) Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals. Development 117, 961–975.PubMedGoogle Scholar
  80. 79.
    Holtfreter, J. (1933) Die totale Exogastrulation, eine Selbstablosung des Ektoderms vom Entomesoderm. Roux’ Arch. Entw. Mech. 129, 669–793.CrossRefGoogle Scholar
  81. 80.
    Poznanski, A. and Keller, R. (1997) The role of planar and early vertical signaling in patterning and expression of Hoxb-1 in Xenopus. Dev. Biol. 189, 256–269.CrossRefPubMedGoogle Scholar
  82. 81.
    Ruiz i Altaba, A. (1990) Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm. Development 108, 67–80.Google Scholar
  83. 82.
    Ruiz i Altaba, A. (1992) Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Development 115, 67–80.Google Scholar
  84. 83.
    Keller, R. E. (1986) The cellular basis of amphibian gastrulation, in Developmental Biology: A Comprehensive Synthesis, vol. 2 (Browder, L., ed.), Plenum, New York, pp. 241–327.Google Scholar
  85. 84.
    Lamb, T. M. (1995) Neural induction and patterning in Xenopus: The role of the dorsal mesoderm and secreted molecules derived from it. Ph.D. Thesis, University of California, Berkeley, CA.Google Scholar
  86. 85.
    Vogt, W. (1929) Gestaltanalyse am Amphibienkein mit ortlicher Vitalfarbung. II. Teil. Gastrulation und Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux Arch. EntwMech. Org. 120, 384–706.CrossRefGoogle Scholar
  87. 86.
    Jacobson, A. and Gordon, R. (1976) Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. J. Exp. Zool. 197, 191–246.CrossRefPubMedGoogle Scholar
  88. 87.
    Jacobson, A. (1981) Morphogenesis of the neural plate and tube, in Morphogenesis and Pattern Formation (Connelley, T. G., Brinkley, L., and Carlson, B, eds.), Wiley, New York, pp. 223–263.Google Scholar
  89. 88.
    Wilson, P. A., Oster, G. M., and Keller, R. (1989) Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants. Development 105, 155–166.PubMedGoogle Scholar
  90. 89.
    Elul, T., Koehl, M., and Keller, R. (1995) Cellular mechanism of neural convergence and extension. J. Cell Biol. H-49 (abstract).Google Scholar
  91. 90.
    Lehman, F. E. (1932) Die Beteiligung von Implantats-und Wirtsgewebe bei der Gastrulation und Neurulation inducierter Embryonalanlagen. Wilhelm Roux Arch. Entw.-Mech. Org. 125, 566–639.CrossRefGoogle Scholar
  92. 91.
    Eagleson, G. and Harris, W. (1989) Mapping the presumptive brain regions in the neural plate of Xenopus laevis. J. Neurology 21, 427–440.Google Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Ray Keller
    • 1
  • Ann Poznanski
    • 1
  • Tamira Elul
    • 2
  1. 1.Department of BiologyUniversity of VirginiaCharlottsville
  2. 2.Graduate Group in BiophysicsUniversity of CaliforniaBerkeley

Personalised recommendations