Skip to main content

Flavoenzyme Structure and Function

Approaches Using Flavin Analogues

  • Protocol
Flavoprotein Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 131))

Abstract

Flavoenzymes are redox proteins that catalyze a wide diversity of biological reactions ranging from O2 activation, to aromatic hydroxylations, dehydrogenations, and reactions in which they can accept or donate one or two electrons. In addition, they can fulfill structural and regulatory roles. This diversity is due to the fine tuning of the reactivity of the isoalloxazine ring of the flavin coenzyme by specific interactions with the protein moiety on the particular enzyme it complexes with. Methods to provide specific information on these interactions have relied on three approaches:

  1. 1.

    Determination of the three-dimensional structure of the flavoenzyme by X-ray diffraction techniques.

  2. 2.

    Spectroscopic probes of the protein influence on flavin structure by techniques such as nuclear magnetic resonance (NMR), resonance Raman, fluorescence, electron paramagnetic resonance (EPR), and circular dichroism (CD) spectroscopies.

  3. 3.

    Replacement of the native flavin coenzyme with suitable flavin analogues designed to ask specific questions regarding the reactivity, the accessibility, and the mode of specific interactions with the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spencer, R., Fisher, J., and Walsh, C. (1976) Preparation, characterization, and chemical properties of the flavin coenzyme analogues 5-deazariboflavin, 5-deazariboflavin 5′-phosphate, and 5-deazariboflavin 5′-diphosphate, 5′ leads to 5′-adenosine ester. Biochemistry 15, 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  2. Kim, J., Fuller, J. H., Kuusk, V., Cunane, L., Chen, Z., Mathews, F. S., and McIntire, W. S. (1995) The cytochrome subunit is necessary for covalent FAD attachment to the flavoprotein subunit of P-cresol methylhydroxylase. J. Biol. Chem. 270, 31,202–31,209.

    Article  PubMed  CAS  Google Scholar 

  3. Miller, J. R. and Edmondson, D. E. (1997) Effect of flavin structure on the enzymatic activity of recombinant human liver monoamine oxidase A, in Flavins and Flavoproteins (Stevenson, K., Massey, V., and Williams, Jr., C. H., eds.), University of Calgary Press, Calgary, Alberta, Canada, pp. 71–75.

    Google Scholar 

  4. Engst, S., Vock, P., Wang, M., Kim, J. J., and Ghisla, S. (1998). On the mechanism of activation of Acyl-CoA substrates by medium chain Acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the FAD ribityl side-chain. Biochemistry, in press.

    Google Scholar 

  5. Muller, F. and Hemmerich, P. (1966) Thiones, imines, oximes and azines of riboflavin. Nucleophilic substitution reactions in the flavin nucleus. Studies in the flavin series. X. Helv. Chim. Acta 49, 2352–2364.

    Article  PubMed  CAS  Google Scholar 

  6. Lambooy, J. P. (1971) Analogs of riboflavin. Meth. Enzymol. 18, 437–447.

    Article  Google Scholar 

  7. Lambooy, J. P. (1967) The alloxazines and isoalloxazines, in Heterocyclic Compounds (Elderfield, R. C., ed.), vol. 9, 2, Wiley, New York.

    Google Scholar 

  8. Hausinger, R. P., Honek, J. K., and Walsh, C. (1986) Enzymol. 122, 199–220.

    Article  CAS  Google Scholar 

  9. Tsibris, J. C. M., McCormick, D. B., and Wright, L. D. (1966) Studies on the binding and function of flavin phosphates with flavin mononucleotide-dependent enzymes J. Biol. Chem. 241, 1138–1143.

    PubMed  CAS  Google Scholar 

  10. Chassy, B. M. and McCormick, D. B. (1965) Coenzyme specificity of D-amino acid oxidase from the flavin moiety of FAD. Biochim. Biophys. Acta 110, 91–96.

    PubMed  CAS  Google Scholar 

  11. Muller, F. and Hemmerich, P. (1966) Thione, imine, oxime und azine des riboflavins. Nucleophile substitutionsreaktionen am flavinkern. Helv. Chim. Acta 49, 2352–2364.

    Article  PubMed  CAS  Google Scholar 

  12. Claiborne, A., Hemmerich, P., Massey, V., and Lawton, R. (1983) Reaction of 2-thio-FAD-reconstituted p-hydroxybenzoate hydroxylase with hydrogen peroxide. Formation of a covalent flavin-protein linkage. J. Biol. Chem. 258, 5433–5439.

    PubMed  CAS  Google Scholar 

  13. Biemann, M., Claiborne, A., Ghisla, S., and Massey, V. (1984) 4-Thioflavins as active site probes of flavoproteins. Reactions with sulfite. J. Biol. Chem. 259, 13,355–13,362.

    PubMed  CAS  Google Scholar 

  14. Schopfer, L. M., Massey, V., and Claiborne, (1981) Active site probes of flavoproteins. Determination of the solvent accessibility of the flavin position 8 for a series of flavoproteins. J. Biol. Chem. 256, 7329–7337.

    PubMed  CAS  Google Scholar 

  15. Muller, F., Mayhew, S. G., and Massey, V. (1973) On the effect of temperature on the absorption spectra of free and protein-bound flavins. Biochemistry 12, 4654–4662.

    Article  PubMed  CAS  Google Scholar 

  16. Gadda, G., Wels, G., Ambrosius, D., Pilone, M. S., and Ghisla, S. (1997) Characterization of cholesterol oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum. Eur. J. Biochem. 250, 360–376.

    Article  Google Scholar 

  17. Massey, V., Ghisla, S., and Moore, D. G. (1979) 8-Mercapto-flavins as active site probes of flavin enzymes. J. Biol. Chem. 254, 9640–9650.

    PubMed  CAS  Google Scholar 

  18. Ghisla, S. and Mayhew, S. G. (1976) Identification and properties of 8-hydroxyflavin adenine dinucleotide in electron-transferring flavoprotein from Peptostreptococcus elsdenii. Eur. J. Biochem. 63, 373–390.

    Article  PubMed  CAS  Google Scholar 

  19. Ghisla, S. and Massey, V. (1991) L-Lactate oxidase, in Chemistry and Biochemistry of Flavoenzymes (Muller, F., ed.), vol. II, CRC Press, Boca Raton, FL, pp. 243–289.

    Google Scholar 

  20. Schultz, G. E., Schirmer, F. H., and Pai, E. F. (1982) FAD-binding site of glutathione reductase. J. Mol. Biol. 160, 287–308.

    Article  Google Scholar 

  21. Hemmerich, P., Massey, V., Michel, H., and Schug, C. (1982) Scope and limitation of single electron transfer in biology. Structure Bonding 48, 93–123.

    Article  Google Scholar 

  22. Eberlein, G. and Bruice, T. C. (1982) One-and two-electron reduction of oxygen by 1,5-dihydroflavins. J. Am. Chem. Soc. 104, 1449–1452.

    Article  CAS  Google Scholar 

  23. Edmondson, D. E., Barman, B., and Tollin, G. (1972) On the importance of the N-5 position in flavin coenzymes. Properties of free and protein-bound 5-deaza analogs. Biochemistry 11, 1133–1137.

    Article  PubMed  CAS  Google Scholar 

  24. Ghisla, S., Thorpe, C., and Massey, V. (1984) Mechanistic studies with general acyl-CoA dehydrogenase and butyryl-CoA-dehydrogenase, evidence for the transfer of the β-hydrogen as a Hydride. Biochemistry 23, 3154–3161.

    Article  PubMed  CAS  Google Scholar 

  25. Hersh, L. B. and Jorns, M. S. (1975) Use of 5-deazaFAD to study hydrogen transfer in the d-amino acid oxidase reaction. J. Biol. Chem. 250, 8728–8734.

    PubMed  CAS  Google Scholar 

  26. Fisher, J., Spencer, R., and Walsh, C. (1976) Enzyme-catalyzed redox reactions with the flavin analogues 5-deazariboflavin, 5-deazariboflavin 5′-phosphate, and 5-deazariboflavin 5′-diphosphate, 5′ leads to 5′-adenosine ester. Biochemistry 15, 1054–1064.

    Article  PubMed  CAS  Google Scholar 

  27. Averill, B. A., Schonbrunn, A., Abeles, R. H., Weinstock, L. T., Cheng, C. C., Fisher, J., Spencer, R., and Walsh, C. (1975) Studies on the mechanism of Mycobacterium smegmatis L-lactate oxidase. 5-Deazaflavin mononucleotide as a coenzyme analogue. J. Biol. Chem. 250, 1603–1605.

    PubMed  CAS  Google Scholar 

  28. Balme, A. and Lederer, F. (1993) Reconstitution of flavin-free flavocytochrome b2 with 5-deazaFMN: a carbanion or a hydride mechanism?, in Flavins and Flavoproteins (Yagi, K., ed.), W. DeGruyter & Co., Berlin, pp. 629–637.

    Google Scholar 

  29. Pollegioni, L., Blodig, W., and Ghisla, S. (1997) On the mechanism of D-amino acid oxidase: structure linear free energy correlations and deuterium kinetic isotope effects using substituted phenylglycines. J. Biol. Chem. 272, 4924–4934.

    Article  PubMed  CAS  Google Scholar 

  30. Yorita, K., Sanko, K., Aki, K., Ghisla, S., Palfrey, B. A., and Massey, V. (1997) On the reaction mechanism of L-lactate oxidase: quantitative structure-activity analysis of the reaction with para-substituted L-mandelates. Proc. Natl. Acad. Sci. USA 94, 9590–9595.

    Article  PubMed  CAS  Google Scholar 

  31. Mattevi, A., Vanoni, M. A., Todone, F., Teplyakov, A., Coda, A., Bolognesi, M., and Curti, B. (1997) Crystal structure of D-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome, Proc. Natl. Acad. Sci. USA 93, 7496–7501.

    Article  Google Scholar 

  32. Ghisla, S. and Massey, V. (1986) New flavins for old: artificial flavins as active site probes of flavoproteins. Biochem. J. 239, 1–12.

    PubMed  CAS  Google Scholar 

  33. Manstein, D. J., Pai, E. F., Schopfer, L. M., and Massey, V. (1986) Absolute stereochemistry of flavins in enzyme-catalyzed reactions. Biochemistry 25, 6807–6816.

    Article  PubMed  CAS  Google Scholar 

  34. Tittmann, K., Proske, D., Spinka, M., Ghisla, G., Rudolph, R. G. H., and Kern, G. (1998) Activation of thiamin diphosphate and FAD in the phosphate dependent pyruvate oxidase from lactobacillus plantarum. J. Biol. Chem. 273, 12,929–12,934.

    Article  PubMed  CAS  Google Scholar 

  35. Kurfurst, M., Macheroux, P., Ghisla, S., and Hastings, J. W. (1989) Bioluminescence emission of bacterial luciferase with 1-deaza-FMN: evidence for the nonin-volvement of N(1)-protonated flavin species as emitters. Eur. J. Biochem. 181, 453–457.

    Article  PubMed  CAS  Google Scholar 

  36. Eckstein, J. W., Hastings, J. W., and Ghisla, S. (1993) Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8 position of flavin on luciferase kinetics. Biochemistry 32, 404–411.

    Article  PubMed  CAS  Google Scholar 

  37. Ortiz-Meldonado, M., Ballou, D. P., and Massey, V. (1997) Leaving group tendencies of 8-substituted flavin-C4a-alkoxides and the mechanism of hydroxylation catalyzed by p-hydroxybenzoate hydroxylase, in Flavins and Flavoproteins (Stevenson, K., Massey, V., and Williams, Jr., C. H., eds.) University of Calgary Press, Calgary, Alberta, Canada, pp. 323–326.

    Google Scholar 

  38. Bruice, T. C., Noar, J. B., Ball, S. S., and Venkataram, U. V. (1983) The monooxygen donation potential of 4a-hydroperoxy flavins as compared with percarboxylic acid and other hydroperoxides. Monooxygen donation to olefin, tertiary amine, alkyl sulfide, and iodide ion. J. Am. Chem. Soc. 105, 2452–2462.

    Article  CAS  Google Scholar 

  39. Blankenhorn, G. (1976) Nicotinamide-dependent one-electron and two-electron (flavin) oxidoreduction: thermodynamics, kinetics, and mechanism. Eur. J. Biochem. 67, 67–80.

    Article  PubMed  CAS  Google Scholar 

  40. Streitwieser, Jr., A. (1966) Molecular Orbital Theory for Organic Chemists, Wiley, New York.

    Google Scholar 

  41. Draper, R. D. and Ingraham, L. L. (1968) A potentiometric study of the flavin semiquinone equilibrium. Arch. Biochem. Biophys. 125, 802–808.

    Article  PubMed  CAS  Google Scholar 

  42. Massey, V., Claiborne, A., Biemann, M., and Ghisla, S. (1984) 4-Thioflavins as active site probes of flavoproteins: general properties. J. Biol. Chem. 259, 9667–9678.

    PubMed  CAS  Google Scholar 

  43. Claiborne, A., Massey, V., Fitzpatrick, P. F., and Schopfer, L. M. (1982) 2-Thioflavins as active site probes of flavoproteins. J. Biol. Chem. 257, 174–182.

    PubMed  CAS  Google Scholar 

  44. Spencer, R., Fisher, J., and Walsh, C. (1977) Reconstitution of flavin enzymes with 1-carba-1-deazaflavin coenzyme analogues. Biochemistry 16, 3594–3602.

    Article  PubMed  CAS  Google Scholar 

  45. Fenner, H., Grauert, R., Hemmerich, P., Michel, H., and Massey, V. (1979) 5-Thia-5-deazaflavin, a 1e-transferring flavin analog. Eur. J. Biochem. 95, 183–191.

    Article  PubMed  CAS  Google Scholar 

  46. Nielsen, P., Bacher, A., Darling, D., and Cushman, M. (1983) Synthesis and biological evaluation of 7α,α,α,8α,α,α-hexafluororiboflavin and 7α,α,α,8α,α,α-hexafluoro-FMN. Z. Naturforsch. 38c, 701–707.

    CAS  Google Scholar 

  47. Massey, V. and Nishino, T. (1980) d-Amino acid oxidase containing 7,8-dichloro-FAD instead of FAD, in Flavins and Flavoproteins (Yagi, K., and Yamano, T., eds.), University Park Press, Baltimore, MD, pp. 1–11.

    Google Scholar 

  48. Moore, E., Ghisla, S., and Massey, V. (1979) Properties of flavins where the 8-methyl group is replaced by mercapto residues. J. Biol. Chem. 254, 8173–8178.

    PubMed  CAS  Google Scholar 

  49. Thorpe, C. and Massey, V. (1980) Flavin analogue studies of pig kidney general acyl-CoA dehydrogenase. Biochemistry 22, 2972–2978.

    Article  Google Scholar 

  50. Light, D. R. and Walsh, C. (1980) Flavin analogs as mechanistic probes of adrenodoxin reductase-dependent electron transfer to the cholesterol side chain cleavage cytochrome P-450 of the adrenal cortex. J. Biol. Chem. 255, 4264–4277.

    PubMed  CAS  Google Scholar 

  51. Massey, V. (1981) A simple method for the determination of redox potentials, in Flavins and Flavoproteins (Curti, B., Ronchi, S., and Zanetti, G., eds.), W. DeGruyter & Co., Berlin, pp. 59–66.

    Google Scholar 

  52. Walsh, C., Fisher, J., Spencer, R., Graham, D. W., Ashton, W. T., Brown, J., Brown, R. D., and Rogers, E. F. (1978) Chemical and enzymatic properties of riboflavin analogues. Biochemistry 17, 1942–1951.

    Article  PubMed  CAS  Google Scholar 

  53. Murthy, Y. U. and Massey, V. (1998) Synthesis and properties of 8-CN-flavin nucleotide analogs and studies with flavoproteins. J. Biol. Chem. 272, 8975–8982.

    Article  Google Scholar 

  54. Edmondson, D. E. (1974) Intramolecular hemiacetal formation in 8-formylribo-flavine. Biochemistry 13, 2817–2821.

    Article  PubMed  CAS  Google Scholar 

  55. Edmondson, D. E. and Singer, T. P. (1973) Oxidation-reduction properties of the 8 α-substituted flavins., J. Biol. Chem. 248, 8144–8149.

    PubMed  CAS  Google Scholar 

  56. Hansch, C. and Leo, H. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York.

    Google Scholar 

  57. Macheroux, P., Eckstein, J., and Ghisla, S. (1987) Studies on the mechanism of bacterial bioluminescence. Evidence compatible with a one electron transfer process and a CIEEL mechanism in the luciferase reaction, in Flavins and Flavoproteins (McCormick, D. B. and Edmondson, D. E., eds.), DeGruyter, Berlin, pp. 613–619.

    Google Scholar 

  58. Hasford, J. J. and Rizzo, C. J. (1998) Linear free energy substituent effect on flavin redox chemistry. J. Am. Chem. Soc. 120, in press.

    Google Scholar 

  59. Hille, R., Fee, J. A., and Massey, V. (1981) Equilibrium properties of xanthine oxidase containing FAD analogs of varying oxidation-reduction potential. J. Biol. Chem. 256, 8933–8940.

    PubMed  CAS  Google Scholar 

  60. Stewart, R. C. and Massey, V. (1985) Potentiometric studies of native and flavin-substituted Old Yellow Enzyme. J. Biol. Chem. 260, 13,639–13,647.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Edmondson, D., Ghisla, S. (1999). Flavoenzyme Structure and Function. In: Chapman, S.K., Reid, G.A. (eds) Flavoprotein Protocols. Methods in Molecular Biology, vol 131. Humana Press. https://doi.org/10.1385/1-59259-266-X:157

Download citation

  • DOI: https://doi.org/10.1385/1-59259-266-X:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-734-2

  • Online ISBN: 978-1-59259-266-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics