Flavins and Flavoenzymes in Diagnosis and Therapy

  • Katja Becker
  • Markus Schirmer
  • Stefan Kanzok
  • R. H. Schirmer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 131)

Abstract

Riboflavin is a vitamin but not at all harmless. It is therefore not surprising that riboflavin and the riboflavinogenic coenzymes flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) play a role in many fields of practical medicine. Here we report on new developments in medical flavinology focusing on the assessment of riboflavin status, medical interventions based on flavins, and current medical aspects concerning the enzymes glutathione reductase (GR) and thioredoxin reductase (TrxR) as representatives of a large family of homodimeric flavoproteins. For systematic and more specific information—particularly on the clinical aspects—we should like to refer the reader to comprehensive reviews (1, 2, 3, 4). This article cannot deal with one specific method. However, methodological details of special medical interest are included. We will keep recalling a simple rule that is often broken in practical medicine and in medical research: Drugs, B2 and light? The treatment can’t be right. It implies that flavins are readily photodegraded, and that a whole range of drugs (5,6) but also biological macromolecules (3,7,8) are subject to inactivating modification in riboflavin-dependent photoreactions. As exemplified for the cytostatic Vinca alkaloids vinblastine and vincristine as well as for the synthetic drug vindesine precautions have to be taken to prevent this side effect of riboflavin application (6).

Keywords

Glutathione Migraine Doxorubicin Disulfide Thiol 

References

  1. 1.
    Bates, C. J. (1987) Human riboflavin requirements and metabolic consequences of deficiency in man and animals. World Rev. Nutr. Diet. 50, 215–265.PubMedGoogle Scholar
  2. 2.
    Müller, F., Ghisla, S., and Bacher, A. (1988) Vitamin B2 und natürliche Flavine, in Vitamine II (Isler, O., Brubacher, G., Ghisla, S., and Kraeutler, B., eds.), Georg Thieme Verlag, Stuttgart, Germany, pp. 50–159.Google Scholar
  3. 3.
    Krauth-Siegel, R. L. and Schirmer, R. H. (1991) Flavoproteins in Medicine, in Chemistry and Biochemistry of Flavoenzymes, vol. I (Müller, F., ed.), CRC Press, Boca Raton, FL, pp. 275–286.Google Scholar
  4. 4.
    Becker, K., Keese, M., Gromer S., and Schirmer, R. H. (1997) Flavins in medicine (minireview). Flavins Flavoproteins 12, 3–12.Google Scholar
  5. 5.
    Bomgaars, L., Gunawardena, S., Kelley, S. E., and Ramu, A. (1997) The inactivation of doxorubicin by long ultraviolet light. Cancer Chemother. Pharmacol. 40, 506–512.PubMedCrossRefGoogle Scholar
  6. 6.
    Granzow, C., Kopun, M., and Kröber, T. (1995) Riboflavin-mediated photosensitization of Vinca alkaloids distorts drug sensitivity assays. Cancer Res. 55, 4837–4843.PubMedGoogle Scholar
  7. 7.
    Frati, E., Khatib, A. M., Front, P., Panasyuk, A., Aprile, F., and Mitrovic, D. R. (1997) Degradation of hyaluronic acid by photosensitized riboflavin in vitro. Modulation of the effect by transition metals, radical quenchers, and metal chelators. Free Rad. Biol. Med. 22, 1139–1144.PubMedCrossRefGoogle Scholar
  8. 8.
    Mori, T., Tano, K., Takimoto, K., and Utsumi, H. (1998) Formation of 8-hydroxyguanine and 2,6-diamino-4-hydroxy-5-formamidopyrimidine in DNA by riboflavin mediated photosensitization. Biochem. Biophys. Res. Commun. 242, 98–101.PubMedCrossRefGoogle Scholar
  9. 9.
    Schirmer R. H., Müller J. G., and Krauth-Siegel R. L. (1995) Disulfide-reductase inhibitors as chemotherapeutic agents: The design of drugs for trypanosomiasis and malaria. Angewandte Chemie Int. Ed. Engl. 34, 141–154.CrossRefGoogle Scholar
  10. 10.
    Färber, P. M., Arscott, L. D., Williams, C. H., Becker, K., and Schirmer, R. H. (1998) Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett. 422, 311–314.PubMedCrossRefGoogle Scholar
  11. 11.
    Gromer, S., Arscott, L. D., Williams, C. H., Schirmer, R. H., and Becker, K. (1998) Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J. Biol. Chem. 273, 20,096–20,101.PubMedCrossRefGoogle Scholar
  12. 12.
    Becker, K., Savvides, S., Keese, M., Schirmer, R. H., and Karplus, P. A. (1998) Enzyme inactivation by NO carrier-based sulfhydryl oxidation. Nature Struct. Biol. 5, 267–271.PubMedCrossRefGoogle Scholar
  13. 13.
    Becker, K., Krebs, B., and Schirmer, R. H. (1991) Protein-chemical standardization of the erythrocyte glutathione reductase activation test (EGRAC test). Application to hypothyroidism. Int. J. Vitam. Nutr. Res. 61, 180–187.PubMedGoogle Scholar
  14. 14.
    Nordhoff, A., Bücheler, U. S., Werner, D., and Schirmer, R. H. (1993) Folding of the four domains and dimerization is impaired by the Gly446′→Glu exchange in human GR. Implications for the design of antiparasitic drugs. Biochemistry 32, 4060–4066.PubMedCrossRefGoogle Scholar
  15. 15.
    Müller, S., Gilberger, T. W., Färber, P. M., Becker, K., Schirmer, R. H., and Walter, R. D. (1996) Recombinant putative glutathione reductase from Plasmodium falciparum exhibits thioredoxin reductase activity. Mol. Biochem. Parasitol. 80, 215–219.PubMedCrossRefGoogle Scholar
  16. 16.
    Glatzle, D., Weber, F., and Wiss, O. (1968) Enzymatic test for the detection of a riboflavin deficiency. NADPH-dependent glutathione reductase of red blood cells and its activation by FAD in vitro. Experientia 24, 1122.PubMedCrossRefGoogle Scholar
  17. 17.
    Bates, C. J., Prentice, A. M., and Paul, A. A. (1994) Seasonal variations in vitamins A, C, riboflavin and folate intakes and status of pregnant and lactating women in a rural Gambian community: some possible implications. Eur. J. Clin. Nutr. 48, 660–668.PubMedGoogle Scholar
  18. 18.
    Becker, K. and Schirmer, R. H. (1990) The EGRAC as a measure of the riboflavin status in man. Titration of hemolysate FAD with apoglutathione reductase. Flavins Flavoproteins 10, 851–854.Google Scholar
  19. 19.
    Kapur, S., Ganguli, P., Ulrich, R., and Raghu, U. (1991) Use of random-sequence riboflavin as a marker of medication compliance in chronic schizophrenics. Schizophr. Res. 6, 49–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Hungerbuhler, P., Bovet, P., Shamlaye, C., Burnand, B., and Waeber, B. (1995) Compliance with medication among outpatients with uncontrolled hypertension in the Seychelles. Bull. World Health Organ. 73, 437–442PubMedGoogle Scholar
  21. 21.
    Del-Boca, F. K., Kranzler, H. R., Brown, J., and Korner, P. F. (1996) Assessment of medication compliance in alcoholics through UV light detection of a riboflavin tracer. Alcohol Clin. Exp. Res. 20, 1412–1417.PubMedCrossRefGoogle Scholar
  22. 22.
    Davies, M. G., Fulton, G. J., and Hagen, P. O. (1995) Clinical biology of nitric oxide. Br. J. Surg. 82, 1598–1610.PubMedCrossRefGoogle Scholar
  23. 23.
    Kröncke, K. D., Fehsel, K., and Kolb-Bachofen, V. (1997) Nitric oxide. Cytotoxicity versus cytoprotection—how, why, when and where? NITRIC OXIDE Biol. Chem. 1, 107–120.CrossRefGoogle Scholar
  24. 24.
    Becker, K., Gui, M., and Schirmer, R. H. (1995) Inhibition of human glutathione reductase by S-nitrosoglutathione. Eur. J. Biochem. 234, 472–478.PubMedCrossRefGoogle Scholar
  25. 25.
    Keese, M., Boese, M., Mülsch, A., Schirmer, R. H., and Becker, K. (1997) Dinitrosyl-dithiol-iron complexes, NO-carriers in vivo, act as potent inhibitors of human glutathione reductase and glutathione S-transferase. Biochem. Pharmacol. 54, 1307–1313.PubMedCrossRefGoogle Scholar
  26. 26.
    Boese, M., Keese, M., Becker, K., Busse, R., and Mülsch, A. (1997) Inhibition of glutathione reductase by dinitrosyl-iron-dithiolate complex. J. Biol. Chem. 272, 21,767–21,773.PubMedCrossRefGoogle Scholar
  27. 27.
    Karplus, P. A. and Schulz, G. E. (1987) Refined structure of glutathione reductase at 1.54 Å resolution. J. Mol. Biol. 195, 701–729.PubMedCrossRefGoogle Scholar
  28. 28.
    Färber, P. M., Becker, K., Müller, S., Schirmer, R. H., and Franklin, R. M. (1996) Molecular cloning and characterization of a putative glutathione reductase gene, the PfGR2 gene, from Plasmodium falciparum. Eur. J. Biochem. 239, 655–661.PubMedCrossRefGoogle Scholar
  29. 29.
    Becker K., Färber P. M., von der Lieth C. W., and Müller S. (1997) Glutathione reductase and thioredoxin reductase of the malaria parasite Plasmodium falciparum. Flavins Flavoproteins 12, 13–22.Google Scholar
  30. 30.
    Schirmer, M. (1998) Dimerisierungsinhibitoren der flavinhaltigen Disulfidreduktasen aus malariainfizierten Erythrozyten. MD-thesis. Heidelberg University, Heidelberg, Germany.Google Scholar
  31. 31.
    Nordhoff, A., Tziatzios, C., Van den Broek, A., Schott, M. K., Kalbitzer, H.-R., Becker, K., Schubert, D., and Schirmer, R. H. (1997) Denaturation and reactivation of dimeric human glutathione reductase. An assay for folding inhibitors. Eur. J. Biochem. 245, 273–282.PubMedCrossRefGoogle Scholar
  32. 32.
    Pongpaew, P., Saowakontha, S., Schelp, F. P., Rojsathaporn, K., and Phonrat, B. (1995) Vitamin B1, B2 and B6 during the course of pregnancy of rural and urban women in northeast Thailand. Int. J. Vitam. Nutr. Res. 65, 111–116.PubMedGoogle Scholar
  33. 33.
    Flatz, G. (1971) Population study of erythrocyte glutathione reductase activity. Humangenetik 11, 269–277.PubMedCrossRefGoogle Scholar
  34. 34.
    Becker, K., Leichsenring, M., Gana, L., Bremer, H. J., and Schirmer, R. H. (1995) Glutathione and associated antioxidant systems in protein energy malnutrition: results of a study in Nigeria. Free Rad. Biol. Med. 18, 257–263.PubMedCrossRefGoogle Scholar
  35. 35.
    Tucker, R. G., Mickelsen, O., and Keys, A. (1960) The influence of sleep, work, diuresis, heat, acute starvation, thiamine intake, and bed rest on human riboflavin starvation. J. Nutr. 72, 251–261.PubMedGoogle Scholar
  36. 36.
    Lee, S. S. and McCormick, D. B. (1985) Thyroid hormone regulation of flavocoenzyme biosynthesis. Arch. Biochem. Biophys. 237, 197–201.PubMedCrossRefGoogle Scholar
  37. 37.
    Pinto, J., Huang, Y. P., and Rivlin, R. S. (1985) Inhibition by chlorpromazine of thyroxine modulation of flavin metabolism in liver, cerebrum and cerebellum. Biochem. Pharmacol. 34, 93–95.PubMedCrossRefGoogle Scholar
  38. 38.
    Becker, K. and Wilkinson, A. (1993) Flavin adenine dinucleotide levels in erythrocytes of very low birthweight infants under vitamin supplementation. Biol. Neonate 63, 80–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Baeckert, P. A., Greene, H. L., Fritz, I., Oelberg, D. G., and Adcock, E. W. (1988) Vitamin concentrations in very low birth weight infants given vitamins intravenously in a lipid emulsion: measurement of vitamins A, D, and E and riboflavin. J. Pediatr. 113, 1057–1065.PubMedCrossRefGoogle Scholar
  40. 40.
    Joshi, P. C. (1989) Ultraviolet radiation-induced photodegradation and 1O2, O2 production by riboflavin, lumichrome and lumiflavin. Indian J. Biochem. Biophys. 26, 186–189.PubMedGoogle Scholar
  41. 41.
    Becker, K. and Schirmer, R. H. (1995) 1,3-Bis(2-chloroethyl)-1-nitrosourea as thiol-carbamoylating agent in biological systems. Methods Enzymol. 251, 173–188.PubMedCrossRefGoogle Scholar
  42. 42.
    Ogle, R. F., Christodoulou, J., Fagan, E., Blok, R. B., Kirby, D. M., Seller, K. L., Dahl, H. H., and Thorburn, D. R. (1997) Mitochondrial myopathy with tRNA(Leu(UUR)) mutation and complex I deficiency responsive to riboflavin. J. Pediatr. 130, 138–145.PubMedCrossRefGoogle Scholar
  43. 43.
    Mack, C. P., Hultquist, D. E., and Shlafer, M. (1995) Myocardial flavin reductase and riboflavin: a potential role in decreasing reoxygenation injury. Biochem. Biophys. Res. Comm. 212, 35–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Natraj, U., George, S., and Kadam, P. (1988) Isolation and partial characterization of human riboflavin carrier protein and the estimation of its level during human pregnancy. J. Reprod. Immunol. 13, 1–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Adiga, P. R., Subramanian, S., Rao, J., and Kumar, M. (1997) Prospects of riboflavin carrier protein (RCP) as an antifertility vaccine in male and female mammals. Hum. Reprod. Update 3, 299–300.CrossRefGoogle Scholar
  46. 46.
    Scholte, H. R., Busch, H. F., Bakker, H. D., Bogaard, J. M., Luyt-Houwen, I. E., and Kuyt, L. P. (1995) Riboflavin-responsive complex I deficiency. Biochim. Biophys. Acta 1271, 75–83.PubMedGoogle Scholar
  47. 47.
    Kmoch, S., Zeman, J., Hrebicek, M., Ryba, L., Kristensen, M. J., and Grgersen, N. (1995) Riboflavin-responsive epilepsy in a patient with SER209 variant form of short-chain acyl-CoA dehydrogenase. J. Inherit. Metab. Dis. 18, 227–229.PubMedCrossRefGoogle Scholar
  48. 48.
    Schoenen, J. (1997) Migraine: genetic, physiopathological, and therapeutic innovations. Rev. Med. Liege. 52, 83–88.PubMedGoogle Scholar
  49. 49.
    Prasad, M. P., Mukudan, M. A., and Krishnaswamy, K. (1995) Micronuclei and carcinogen DNA adducts as intermediate end points in nutrient intervention trial of precancerous lesions in the oral cavity. Eur. J. Cancer. Oral. Oncol. 31B, 155–159.CrossRefGoogle Scholar
  50. 50.
    Webster, R. P., Gawde, M. D., and Bhattacharya, R. K. (1996) Modulation of carcinogen-induced DNA damage and repair enzyme activity by dietary riboflavin. Cancer Lett. 98, 129–135.PubMedGoogle Scholar
  51. 51.
    Khadem, J., Truong, T., and Ernest, J. T. (1994) Photodynamic biologic tissue glue. Cornea 13, 406–410.PubMedCrossRefGoogle Scholar
  52. 52.
    Keese, M. (1997) Zur Zellbiologie der Glutathionreduktase: Wirkung physiologischer NO-Carrier und Entwicklung eines Indikatorsystems für den zellulären Redoxmetabolismus. MD thesis. Heidelberg University.Google Scholar
  53. 53.
    Schirmer, R. H., Krauth-Siegel, R. L., and Schulz, G. E. (1989) Glutathione reductase, in Coenzymes and Cofactors, vol. 3A (Dolphin, D., Poulson, R., and Avramovic, O., eds.), Wiley, New York, pp. 545–596.Google Scholar
  54. 54.
    Arscott, L. D., Gromer, S., Schirmer, R. H., Becker, K., and Williams, C. H. (1997) The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc. Natl. Acad. Sci. USA. 94, 3621–3626.PubMedCrossRefGoogle Scholar
  55. 55.
    Murthy, Y. V. and Massey, V. (1995) Chemical modification of the N-10 ribityl side chain of flavins. Effects on properties of flavoprotein disulfide oxidoreductases. J. Biol. Chem. 270, 28,586–28,594.PubMedCrossRefGoogle Scholar
  56. 56.
    Krauth-Siegel, R. L., Schirmer, R. H., and Ghisla, S. (1985) FAD analogues as prosthetic groups of human glutathione reductase. Properties of the modified enzyme species and comparisons with the active site structure. Eur. J. Biochem. 148, 335–344.PubMedCrossRefGoogle Scholar
  57. 57.
    Cowden, W. B., Clark, I. A., and Hunt N. H. (1988) Flavins as potential antimalarials. 1. 10-(Halophenyl)-3-methylflavins. J. Med. Chem. 31, 799–801.PubMedCrossRefGoogle Scholar
  58. 58.
    Becker, K., Christopherson, R. J., Cowden, W. B., Hunt, H. N., and Schirmer, R. H. (1990) Flavin analogs with antimalarial activity as glutathione reductase inhibitors. Biochem. Pharmacol. 39, 59–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Schönleben-Janas, A., Kirsch, P., Mittl, P. R. E., Schirmer, R. H., and Krauth-Siegel, R. L. (1996) Inhibition of human glutathione reductase by 10-arylisoalloxazines: crystalline, kinetic, and electrochemical studies. J. Med. Chem. 39, 1549–1555.PubMedCrossRefGoogle Scholar
  60. 60.
    Williams, C. H., Jr (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase—a family of flavoenzyme transhydrogenases, in Chemistry and Biochemistry of Flavoenzymes, vol. 3 (Müller, F., ed.), CRC Press, Boca Raton, FL, pp. 121–211.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Katja Becker
    • 1
  • Markus Schirmer
    • 1
  • Stefan Kanzok
    • 1
  • R. H. Schirmer
    • 1
  1. 1.Center of BiochemistryUniversity of HeidelbergHeidelbergGermany

Personalised recommendations