Skip to main content

Imaging Fluorescence Resonance Energy Transfer as Probe of Membrane Organization and Molecular Associations of GPI-Anchored Proteins

  • Protocol
Protein Lipidation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 116))

Abstract

The spatial organization of (GPI)-anchored proteins in cell membranes is a matter of considerable interest. These proteins are thought to be organized into membrane microdomains enriched in GPI-anchored proteins, glycosphingolipids, cholesterol, and some other lipid-modified proteins. Such microdomains have been implicated in membrane trafficking and cell signaling events (reviewed in ref. 1). However, most evidence for the existence of microdomains comes from biochemical studies of isolated membrane fractions (1,2). Microscopy of intact cells has not detected microdomains enriched in GPI-anchored proteins (35); however, these experiments either sample a limited part of the cell surface at high electron-microscope resolution, or an entire cell at low light-microscope resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.

    Article  PubMed  CAS  Google Scholar 

  2. Brown, D. A. and Rose, J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544.

    Article  PubMed  CAS  Google Scholar 

  3. Fujimoto, T. (1996) GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44, 929–941.

    PubMed  CAS  Google Scholar 

  4. Mayor, S. and Maxfield, F. R. (1995) Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell. 6, 929–944.

    PubMed  CAS  Google Scholar 

  5. Mayor, S., Rothberg, K. G., and Maxfield, F. R. (1994) Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951.

    Article  PubMed  CAS  Google Scholar 

  6. Kenworthy, A. K. and Edidin, M. (1997) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100Å using imaging fluourescence response energy transfer. J. Cell Biol. 142, 69–84.

    Article  Google Scholar 

  7. Clegg, R. M. (1995) Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6, 103–110.

    Article  PubMed  CAS  Google Scholar 

  8. Wu, P. and Brand, L. (1994) Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13.

    Article  PubMed  CAS  Google Scholar 

  9. Dunn, K. W., Mayor, S., Myers, J. N., and Maxfield, F. R. (1994) Applications of ratio fluorescence microscopy in the study of cell physiology. FASEB J. 8, 573–582.

    PubMed  CAS  Google Scholar 

  10. Herman, B. (1989) Resonance energy transfer microscopy. Methods Cell Biol. 30, 219–243.

    Article  PubMed  CAS  Google Scholar 

  11. Selvin, P. R. (1995) Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334.

    Article  PubMed  CAS  Google Scholar 

  12. Tsien, R. Y., Bacskai, B. J., and Adams, S. R. (1993) FRET for studying intracel-lular signalling. Trends Cell Biol. 3, 242–245.

    Article  PubMed  CAS  Google Scholar 

  13. Bastiaens, P. I. and Jovin, T. M. (1996) Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C beta I. Proc. Natl. Acad. Sci. USA 93, 8407–8412.

    Article  PubMed  CAS  Google Scholar 

  14. Bastiaens, P. I., Majoul, I. V., Verveer, P. J., Soling, H. D., and Jovin, T. M. (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J. 15, 4246–4253.

    PubMed  CAS  Google Scholar 

  15. Bastiaens, P. I. H., Wouters, F. S., and Jovin, T. M. (1995) Imaging the molecular state of proteins in cells by fluorescence resonance energy transfer (FRET). Sequential photobleaching of Förster donor-acceptor pairs, in 2nd Hamamatsu International Symposium on Biomolecular Mechanisms and Photonics: Cell-Cell Communications.

    Google Scholar 

  16. Jovin, T. M. and Arndt-Jovin, D. J. (1989) FRET microscopy: digital imaging of fluorescence resonance energy transfer. Application in cell biology, in Cell Structure and Function by Microspectrofluorimetry, (Kohen, E., Ploem, J. S., and Hirschberg, J. G., eds.), Academic, Orlando, FL, pp. 99–117.

    Google Scholar 

  17. Jovin, T. M. and Arndt-Jovin, D. J. (1989) Luminescence digital imaging microscopy. Annu. Rev. Biophys. Biophys. Chem. 18, 271–308.

    Article  PubMed  CAS  Google Scholar 

  18. Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J., and Waggoner, A. S. (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem. 4, 105–111.

    Article  CAS  Google Scholar 

  19. Matko, J. and Edidin, M. (1997) Energy transfer methods for detecting molecular clusters on cell surfaces. Methods Enzymol. 278, 444–462.

    Article  PubMed  CAS  Google Scholar 

  20. Dewey, T. G. and Hammes, G. G. (1980) Calculation of fluorescence resonance energy transfer on surfaces. Biophys. J. 32, 1023–1035.

    Article  PubMed  CAS  Google Scholar 

  21. Wolber, P. K. and Hudson, B. S. (1979) An analytic solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28, 197–210.

    Article  PubMed  CAS  Google Scholar 

  22. Gadella, T. W., Jr., and Jovin, T. M. (1995) Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J.Cell Biol. 129, 1543–1558.

    Article  PubMed  CAS  Google Scholar 

  23. Kam, Z., Volberg, T., and Geiger, B. (1995) Mapping of adherens junction components using microscopic resonance energy transfer imaging. J.Cell Sci. 108, 1051–1062.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Kenworthy, A.K., Edidin, M. (1998). Imaging Fluorescence Resonance Energy Transfer as Probe of Membrane Organization and Molecular Associations of GPI-Anchored Proteins. In: Gelb, M.H. (eds) Protein Lipidation Protocols. Methods in Molecular Biology, vol 116. Humana Press. https://doi.org/10.1385/1-59259-264-3:37

Download citation

  • DOI: https://doi.org/10.1385/1-59259-264-3:37

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-534-8

  • Online ISBN: 978-1-59259-264-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics