Imaging Fluorescence Resonance Energy Transfer as Probe of Membrane Organization and Molecular Associations of GPI-Anchored Proteins

  • Anne K. Kenworthy
  • Michael Edidin
Part of the Methods in Molecular Biology book series (MIMB, volume 116)

Abstract

The spatial organization of (GPI)-anchored proteins in cell membranes is a matter of considerable interest. These proteins are thought to be organized into membrane microdomains enriched in GPI-anchored proteins, glycosphingolipids, cholesterol, and some other lipid-modified proteins. Such microdomains have been implicated in membrane trafficking and cell signaling events (reviewed in ref. 1). However, most evidence for the existence of microdomains comes from biochemical studies of isolated membrane fractions (1,2). Microscopy of intact cells has not detected microdomains enriched in GPI-anchored proteins (3, 4, 5); however, these experiments either sample a limited part of the cell surface at high electron-microscope resolution, or an entire cell at low light-microscope resolution.

Keywords

Cholesterol Azide Xenon Bleach Cholera 

References

  1. 1.
    Simons, K. and Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569–572.PubMedCrossRefGoogle Scholar
  2. 2.
    Brown, D. A. and Rose, J. K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544.PubMedCrossRefGoogle Scholar
  3. 3.
    Fujimoto, T. (1996) GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44, 929–941.PubMedGoogle Scholar
  4. 4.
    Mayor, S. and Maxfield, F. R. (1995) Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell. 6, 929–944.PubMedGoogle Scholar
  5. 5.
    Mayor, S., Rothberg, K. G., and Maxfield, F. R. (1994) Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951.PubMedCrossRefGoogle Scholar
  6. 6.
    Kenworthy, A. K. and Edidin, M. (1997) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100Å using imaging fluourescence response energy transfer. J. Cell Biol. 142, 69–84.CrossRefGoogle Scholar
  7. 7.
    Clegg, R. M. (1995) Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6, 103–110.PubMedCrossRefGoogle Scholar
  8. 8.
    Wu, P. and Brand, L. (1994) Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Dunn, K. W., Mayor, S., Myers, J. N., and Maxfield, F. R. (1994) Applications of ratio fluorescence microscopy in the study of cell physiology. FASEB J. 8, 573–582.PubMedGoogle Scholar
  10. 10.
    Herman, B. (1989) Resonance energy transfer microscopy. Methods Cell Biol. 30, 219–243.PubMedCrossRefGoogle Scholar
  11. 11.
    Selvin, P. R. (1995) Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsien, R. Y., Bacskai, B. J., and Adams, S. R. (1993) FRET for studying intracel-lular signalling. Trends Cell Biol. 3, 242–245.PubMedCrossRefGoogle Scholar
  13. 13.
    Bastiaens, P. I. and Jovin, T. M. (1996) Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C beta I. Proc. Natl. Acad. Sci. USA 93, 8407–8412.PubMedCrossRefGoogle Scholar
  14. 14.
    Bastiaens, P. I., Majoul, I. V., Verveer, P. J., Soling, H. D., and Jovin, T. M. (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J. 15, 4246–4253.PubMedGoogle Scholar
  15. 15.
    Bastiaens, P. I. H., Wouters, F. S., and Jovin, T. M. (1995) Imaging the molecular state of proteins in cells by fluorescence resonance energy transfer (FRET). Sequential photobleaching of Förster donor-acceptor pairs, in 2nd Hamamatsu International Symposium on Biomolecular Mechanisms and Photonics: Cell-Cell Communications.Google Scholar
  16. 16.
    Jovin, T. M. and Arndt-Jovin, D. J. (1989) FRET microscopy: digital imaging of fluorescence resonance energy transfer. Application in cell biology, in Cell Structure and Function by Microspectrofluorimetry, (Kohen, E., Ploem, J. S., and Hirschberg, J. G., eds.), Academic, Orlando, FL, pp. 99–117.Google Scholar
  17. 17.
    Jovin, T. M. and Arndt-Jovin, D. J. (1989) Luminescence digital imaging microscopy. Annu. Rev. Biophys. Biophys. Chem. 18, 271–308.PubMedCrossRefGoogle Scholar
  18. 18.
    Mujumdar, R. B., Ernst, L. A., Mujumdar, S. R., Lewis, C. J., and Waggoner, A. S. (1993) Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem. 4, 105–111.CrossRefGoogle Scholar
  19. 19.
    Matko, J. and Edidin, M. (1997) Energy transfer methods for detecting molecular clusters on cell surfaces. Methods Enzymol. 278, 444–462.PubMedCrossRefGoogle Scholar
  20. 20.
    Dewey, T. G. and Hammes, G. G. (1980) Calculation of fluorescence resonance energy transfer on surfaces. Biophys. J. 32, 1023–1035.PubMedCrossRefGoogle Scholar
  21. 21.
    Wolber, P. K. and Hudson, B. S. (1979) An analytic solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28, 197–210.PubMedCrossRefGoogle Scholar
  22. 22.
    Gadella, T. W., Jr., and Jovin, T. M. (1995) Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J.Cell Biol. 129, 1543–1558.PubMedCrossRefGoogle Scholar
  23. 23.
    Kam, Z., Volberg, T., and Geiger, B. (1995) Mapping of adherens junction components using microscopic resonance energy transfer imaging. J.Cell Sci. 108, 1051–1062.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1998

Authors and Affiliations

  • Anne K. Kenworthy
    • 1
  • Michael Edidin
    • 1
  1. 1.Department of BiologyJohns Hopkins UniversityBaltimore

Personalised recommendations