Novel Eicosanoids

Isoprostanes and Related Compounds
  • L. Jackson RobertsII
  • Cynthia J. Brame
  • Yan Chen
  • Jason D. Morrow
Part of the Methods in Molecular Biology book series (MIMB, volume 120)


This chapter will summarize the biochemistry and biological actions of isoprostanes (IsoPs) and related compounds. Several comprehensive reviews of the IsoPs have been published recently (1, 2, 3). Therefore, many aspects of this subject will only be summarized briefly for sake of completeness. Rather, in this chapter, we have provided an update on previously published reviews by focusing in more detail on new information and new emerging areas related to the IsoPs.


Oxidant Injury Lipid Hydroperoxide Oxidative Stress Status Lipoprotein Subclass Thromboxane Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Morrow, J. D. and Roberts, L. J., II. (1996) The isoprostanes: current knowledge and directions for future research. Biochem. Pharmacol. 51, 1–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Roberts, L. J., II and Morrow, J. D. (1997) Generation and actions of isoprostanes. Biochem. Biophys. Acta 1345, 121–135.PubMedGoogle Scholar
  3. 3.
    Morrow, J. D. and Roberts, L. J., II (1997) The isoprostanes: unique bioactive products of lipid peroxidation. Prog. Lipid Res. 36, 1–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Pryor, W. A., Stanley, J. P., and Blair, E. (1976) Autoxidation of polyunsaturated fatty acids. II. A suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides. Lipids 11, 370–379.PubMedCrossRefGoogle Scholar
  5. 5.
    Porter, N. A. and Funk, M.O. (1975) Peroxy radical cyclization as a model for prostaglandin sythesis. J. Org. Chem. 40, 3614,3615.PubMedCrossRefGoogle Scholar
  6. 6.
    Morrow, J. D., Harris, T. M., and Roberts, L. J., II (1990) Non-cyclooxy genase oxidative formation of a series of novel prostaglandins: Analytical ramifications for measurement of eicosanoids. Anal. Biochem. 184, 1–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Taber, D. F., Morrow, J. D., and Roberts, L. J., II (1997) A nomenclature system for the isoprostanes. Prostaglandins 53, 63–67.PubMedCrossRefGoogle Scholar
  8. 8.
    Waugh, R. J. and Murphy, R. C. (1996) Mass spectrometric analysis of four regioisomers of F2-isoprostanes formed by free radical oxidation of arachidonic acid. J. Am. Soc. Mass Spectrom. 7, 490–499.CrossRefGoogle Scholar
  9. 9.
    Morrow, J. D., Hill, K. E., Burk, R. F., Nammour, T. M., Badr, K. F., and Roberts, L. J., II (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical catalyzed mechanism. Proc. Natl. Acad. Sci. USA 87, 9383–9387.PubMedCrossRefGoogle Scholar
  10. 10.
    Waugh, R. J., Morrow, J. D., Roberts, L. J., II, and Murphy, R. C. (1997) Identification and relative quantitation of F2-isoprostanes regioisomers formed in vivo in the rat. Free Rad. Biol. Med. 23, 943–954.PubMedCrossRefGoogle Scholar
  11. 11.
    Morrow, J. D. and Roberts, L. J., II (1998) Mass spectrometric quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol. 300, 3–12.CrossRefGoogle Scholar
  12. 12.
    Morrow, J. D., Awad, J. A., Boss, H. J., Blair, I. A., and Roberts, L. J., II (1992) Non-cyclooxygenase derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc. Natl. Acad. Sci. USA 89, 10,721–10,725.PubMedCrossRefGoogle Scholar
  13. 13.
    Morrow, J. D., Awad, J. A., Kato, T., Takahashi, K., Badr, K. F., Roberts, L. J., II, and Burk, R. F. (1992) Formation of novel non-cyclooxygenase derived prostanoids (F2-isoprostanes) in carbon tetrachloride hepatotoxicity, an animal model of lipid peroxidation. J. Clin. Invest. 90, 2502–2507.PubMedCrossRefGoogle Scholar
  14. 14.
    Morrow, J. D., Roberts, L. J., II, Daniel, V. C., Awad, J. A., Mirochnitchenko, O., Swift, L. L., and Burk, R. F. (1998) Comparison of formation of D2/E2-isoprostanes and F2-isoprostanes in vitro and in vivo—effects of oxygen tension and glutathione. Arch. Biochem. Biophys. 353, 160–171.PubMedCrossRefGoogle Scholar
  15. 15.
    Morrow, J. D., Minton, T. A., Mukundan, C. R., Campell, M. D., Zackert, W. E., Daniel, V. C., Badr, K. F., Blair, I. A., and Roberts, L. J., II (1994) Free radical induced generation of isoprostanes in vivo: Evidence for the formation of D-ring and E-ring isoprostanes. J. Biol. Chem. 269, 4317–4326.PubMedGoogle Scholar
  16. 16.
    Morrow, J. D., Awad, J. A., Zackert, W. E., Daniel, V. C., and Roberts, L. J., II (1996) Free radical-induced generation of thromboxane-like compounds (isothromboxanes) in vivo. J. Biol. Chem. 271, 23,185–23,190.PubMedCrossRefGoogle Scholar
  17. 17.
    Salomon, R. G. and Miller, D. B. (1985) Levuglandins: isolation, characterization, and total synthesis of new secoprostanoid products from prostaglandin endoperoxides. Adv. Prostaglandin Thromboxane Leukotriene Res. 15, 323–326.Google Scholar
  18. 18.
    Salomon, R. G. (1985) Prostaglandin endoperoxide reaction mechanisms and the discovery of levuglandins. Acc. Chem. Res. 18, 294–301.CrossRefGoogle Scholar
  19. 19.
    Iyer, R. S., Ghosh, S., and Salomon, R. G. (1989) Levuglandin E2 cross-links proteins. Prostaglandins 37, 471–480.PubMedCrossRefGoogle Scholar
  20. 20.
    Murthi, K. K., Friedman, L. R., Olenick, N. L., and Salomon, R. G. Formation of DNA-protein cross-links in mammalian cells by levuglandin E2. Biochemistry 32, 4090–4097.Google Scholar
  21. 21.
    Esterbauer, H., Schaur, R. J., and Zollner, H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde, and related aldehydes. Free Rad. Biol. Med. 11, 81–128.PubMedCrossRefGoogle Scholar
  22. 22.
    Iyer, R. S. Kobierski, M. E., and Salomon, R. G. (1994) Generation of pyrroles in the reaction of levuglandin E2 with proteins. J. Org. Chem. 59, 6038–6043.CrossRefGoogle Scholar
  23. 23.
    Hoft, E., Katritzky, A. R., and Nesbit, M. R. (1969) The autoxidation of alkylpyrroles. J. Org. Chem. 32, 3330–3333.Google Scholar
  24. 24.
    Fitzpatrick F. A. and Wynalda, M. A. (1983) Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro. J. Biol. Chem. 258, 11,713–11,718.PubMedGoogle Scholar
  25. 25.
    Fukushima, M. (1992) Biological activities and mechanisms of PGJ2 and related compounds: an update. Prostaglandins Leukotrienes Essent. Fatty Acids 47, 1–12.CrossRefGoogle Scholar
  26. 26.
    Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C., and Lehmann, J. M. (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83, 813–819.PubMedCrossRefGoogle Scholar
  27. 27.
    Hirata, Y., Hayashi, H., Ito, S., Kikawa, Y, Ishibashi, M., Sudo, M., Miyazaki, H., Fukushima, M., Narumiya, S., and Hayaishi, O. (1988) Occurrence of 9-deoxy-Δ9, Δ12-13,14-dihydroprostaglandin D2 in human urine. J. Biol. Chem. 263, 16,619–16,625.PubMedGoogle Scholar
  28. 28.
    Atsmon, J., Sweetman, B. J., Baertschi, S. W., Harris, T. M., and Roberts, L. J., II (1990) Formation of thiol conjugates of 9-deoxy-Δ9, Δ12 (E)-prostaglandin D2 and Δ12 (E)-prostaglandin D2. Biochemistry 29, 3760–3765.PubMedCrossRefGoogle Scholar
  29. 29.
    Morrow, J. D., Scruggs, J., Chen, Y., Zackert, W. E., and Roberts, L. J., II (1998) Evidence that the E2-isoprostane, 15-E2t-isoprostane (8-iso-prostaglandin E2) is formed in vivo. J. Lip. Res. 39, in press.Google Scholar
  30. 30.
    Nourooz-Zadeh, J., Halliwell, B., and Anggard, E. (1997) Evidence for the formation of F3-isoprostanes during peroxidation of eicospentaenonic acid. Biochem. Biophys. Res. Commun. 236, 467–472.PubMedCrossRefGoogle Scholar
  31. 31.
    Roberts, L. J., II, Montine, T. J., Markesberry, W. R., Tapper, A. R., Hardy, P., Chemtob, S., Dettbarn, W. D., and Morrow, J. D. (1998) Formation of isoprostane-like compounds (Neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 273, 13,605–13,612.PubMedCrossRefGoogle Scholar
  32. 32.
    Salem, N., Jr., Kim, H.-Y., and Yergey, J. A. (1986) Docosahexaenoic acid: membrane function and metabolism, in Health Effects of Polyunsaturated Fatty Acids in Seafoods (Simopoulos, A. P., Kifer, R. R., and Martin, R. E., eds.), Academic, Orlando, FL, pp. 263–317.Google Scholar
  33. 33.
    Skinner, E. R., Watt, C., Besson, J. A., and Best, P. V. (1993) Differences in the fatty acid composition of the grey and white matter of different regions of the brains with Alzheimer’s disease and control subjects. Brain 116, 717–725.PubMedCrossRefGoogle Scholar
  34. 34.
    Dratz, E. A. and Deese, A. J. (1986) The role of docosahexaenonic (C22∶6ω3) in biological membranes: examples from photoreceptors and model membrane bilayers, in Health Effects of Polyunsaturated Fatty Acids in Seafoods (Simopoulos, A. P., Kifer, R. R., and Martin, R. E., eds.), Academic, Orlando, FL, pp. 319–351.Google Scholar
  35. 35.
    Halliwell, B. and Grootveld, M. (1987) The measurement of free radical reactions in humans. FEBS Lett. 213, 9–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Awad, J. A., Morrow, J. D., Hill, K. E., Roberts, L. J., II, and Burk, R. F. (1994) Detection and localization of lipid peroxidation in vitamin E and selenium deficient rats using F2-isoprostanes. J. Nutr. 124, 810–816.PubMedGoogle Scholar
  37. 37.
    Awad, J. A., Burk, R. F., and Roberts, L. J., II (1994) Effect of selenium deficiency and glutathione modulating agents on diquat toxicity and lipid peroxidation. J. Pharmacol. Exp. Therap. 270, 858–864.Google Scholar
  38. 38.
    Mathews, W. R., McKenna, R., Guido, D. M., Petre, T. W., Jolly, R. A., Morrow, J. D., and Roberts, L. J., II (1993) A comparison of gas chromatography-mass spectrometry assays for in vivo lipid peroxidation. Proc. 41 st ASMS Conf. Mass Spectrometry Allied Topics, 865A,865B.Google Scholar
  39. 39.
    Salahudeen, A., Bach, K., Morrow, J. D., and Roberts, L. J., II (1995) Hydrogen peroxide induces 21-aminosteroid-inhibitable F2-isoprostane production and cytolysis in renal tubular epithelial cells. J. Am Soc. Nephrol. 6, 1300–1303.PubMedGoogle Scholar
  40. 40.
    Salahudeen, A., Wilson, P., Pande, R., Poovala, V., Kanji, V., Ansari, N., Morrow, J. D., and Roberts, L. J., II (1998) Cisplatin induces N-acetyl cysteine suppressible F2-isoprostane production and injury in renal tubular epithelial cells. J. Am. Soc. Nephrol., in press.Google Scholar
  41. 41.
    Reckelhoff, J. F., Kanji, V., Racusen, L., Morrow, J. D., Roberts, L. J., II, and Salahudeen, A. K. (1998) F2-isoprostanes increases in the kidney with aging and are reduced with long term vitamin E. Am. J. Physiol., in press.Google Scholar
  42. 42.
    Roberts, L. J., II, Moore, K. P., Zackert, W. E., Oates, J. A., and Morrow, J. D. (1996) Identification of the major urinary metabolite of the F2-isoprostane, 8-iso-prostaglandin F, in humans. Biol. Chem. 271, 20,617–20,620.CrossRefGoogle Scholar
  43. 43.
    Berliner, J. A. and Heinecke, J. W. (1996) The role of oxidized lipoproteins in atherogenesis. Free Rad. Biol. Med. 20, 707–727.PubMedCrossRefGoogle Scholar
  44. 44.
    Morrow, J. D., Frei, B., Longmire, A. W., Gaziano, J. M., Lynch, S. M., Strauss, W. E., Oates, J. A., and Roberts, L. J., II (1995) Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers: smoking as a cause of oxidative damage. N. Engl. J. Med. 332, 1198–1203.PubMedCrossRefGoogle Scholar
  45. 45.
    Roberts, L. J., II and Morrow, J. D. (1998) Isoprostanes as markers of lipid peroxidation in atherosclerosis, in Molecular and Cellular Basis of Inflammation (Serhan, C N. and Ward, P. A., eds.), Humana, Totowa, NJ, in press.Google Scholar
  46. 46.
    Longmire, A. W., Swift, L. L., Roberts, L. J., II, Awad, J. A., Burk, R. F., and Morrow, J. D. (1994) Effect of oxygen tension on the generation of F2-isoprostanes and malondialdehyde in peroxidizing rat liver microsomes. Biochem. Pharmacol. 47, 1173–1177.PubMedCrossRefGoogle Scholar
  47. 47.
    Lynch, S. M., Morrow, J. D., Roberts, L. J., II, and Frei, B. (1994) Formation of non cyclooxygenase derived prostanoids (F2-isoprostanes) in human plasma and isolated low density lipoproteins exposed to metal ion-dependent and-independent oxidative stress. J. Clin. Invest. 93, 998–1004.PubMedCrossRefGoogle Scholar
  48. 48.
    Gniwotta, C., Morrow, J. D., Roberts, L. J., II, and Kuhn, H. (1998) Prostaglandin F2-like compounds, F2-isoprostanes, are present in increased amounts in human atherosclerotic lesions. J. Arteriosclerosis Thromb. Vasc. Biol. 17, 3236–3241.Google Scholar
  49. 49.
    Pratico, D., Iulianl, L., Mauriello, A., Spagnoli, L., Lawson, J. A., Maclouf, J., Violi, F., and FitzGerald, G. A. (1997) Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J. Clin. Invest. 100, 2028–2034.PubMedCrossRefGoogle Scholar
  50. 50.
    Davi, G., Alessandrini, P., Mezzetti, A., Minotti, G., Bucciarelli, T., Costantini, F., Cipollone, F., Bon, G. B., Ciabattoni, G., and Patrono, C. (1997) In vivo formation of 8-epi-prostaglandin F in hypercholesterolemia. Arteriosclerosis Thromb. Vasc. Biol. 17, 3230–3235.Google Scholar
  51. 51.
    Delanty, N., Reilly, M. P., Pratico, D., Lawson, J. A., McCarthy, J. F., Wood, A. E., Ohnishi, S. T., Fitzgerald, D. J., and Fitzgerald, G. A. (1997) 8-epi-PGF generation during coronary reperfusion. Circulation 95, 2492–2499.PubMedGoogle Scholar
  52. 52.
    Takahashi, K., Nammour, T. M., Ebert, J., Morrow, J. D., Roberts, L. J., II, and Badr, K. F. (1992) Glomerular actions of a free radical generated novel prostaglandin, 8-epi-prostaglandin F, in the rat. J. Clin. Invest. 90, 136–141.PubMedCrossRefGoogle Scholar
  53. 53.
    Mathews, W. R., Guido, D. M., Fischer, M. A., and Jaeschke, H. (1994) Lipid peroxidation as a molecular mechanism of liver cell injury during reperfusion after ischemia. Free Rad. Biol. Med. 16, 763–770.PubMedCrossRefGoogle Scholar
  54. 54.
    Reilly, M. P., Delanty, N., Roy, L., Rokach, J., Callaghan, P. O., Crean, P., Lawson, J. A., and FitzGerald, G. A. (1997) Increased formation of the isoprostanes IPF and 8-epi-prostaglandin F in acute coronary angioplasty: evidence for oxidant stress during coronary reperfusion in humans. Circulation 96, 3314–3320.PubMedGoogle Scholar
  55. 55.
    Gopaul, N. K., Anggard, E. E., Mallet, A. I., Beridge, D. J., Wolff, S. P., and Nourooz-Zadey, J. (1995) Plasma 8-epi-PGF levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett. 368, 225–229.PubMedCrossRefGoogle Scholar
  56. 56.
    Morrow, J. D., Moore, K. P., Awad, J. A., Ravenscraft, M. D., Marini, G., Badr, K. F., Williams, R., and Roberts, L. J., II (1993) Marked overproduction of non-cyclooxygenase derived prostanoids (F2-isoprostanes) in the hepatorenal syndrome. J. Lipid Mediators 6, 417–420.Google Scholar
  57. 57.
    Stein, C. M., Awad, J. A., Tanner, S. B., Roberts, L. J., II, and Morrow, J. D. (1996) Evidence for free radical mediated injury (isoprostane overproduction) in scleroderma. Arthritis Rheumatism 39, 1146–1150.PubMedCrossRefGoogle Scholar
  58. 58.
    Awad, J. A. and Morrow, J. D. (1995) Excretion of F2-isoprostanes in bile: a novel index of hepatic lipid peroxidation. Hepatology 22, 962–968.PubMedGoogle Scholar
  59. 59.
    Hazbun, M. E., Hamilton, R., Holian, A., and Eschenbacher, W. L. (1993) Ozone-induced increases in substance P and 8-epi-prostaglandin F in the airways of human subjects. Am. J. Respir. Cell Mol. Biol. 9, 568–672.PubMedGoogle Scholar
  60. 60.
    Kadiiska, M. B., Morrow, J. D., Awad, J. A., Roberts, L. J., II, and Mason, R. P. (1998) Enhanced formation of free radicals and F2-isoprostanes in vivo by actue Cr (VI) poisoning. Chem. Res. Toxicol., in press.Google Scholar
  61. 61.
    Yang, A. P., Wu, A., Morrow, J. D., Roberts, L. J., II, and Dettbarn, W.-D. (1996) Increases in maolndialdebyde-thiobarbituric acid complex (MDA-TBA) and F2-isoprostanes in diisopropyl fluorophosphate induced muscle hyperactivity. Biochem. Pharmacol. 52, 357–361.PubMedCrossRefGoogle Scholar
  62. 62.
    Awad, J. A., Horn, J.-L., Roberts, L. J., II, and Franks, J. J. (1996) Demonstration of halothane-induced hepatic lipid peroxidation in rats using F2-isoprostanes. Anesthesiology 84, 910–916.PubMedCrossRefGoogle Scholar
  63. 63.
    Nanji, A. A., Khwaja, S., Tahan, S. R., and Sadrzadeh, S. M. H (1994) Plasma levels of a noncyclooxygenase-derived prostanoid (8-isoprostane) correlate with the severity of liver injury in experimental alcoholic liver disease. J. Pharmacol. Exp. Therap. 269, 1280–1285.Google Scholar
  64. 64.
    Dabbagh, A. J. U., Mannion, T., Lynch, S. M., and Frei, B. (1994) The effect of iron overload on rat plasma and liver oxidant status in vivo. Biochem. J. 300, 799–803.PubMedGoogle Scholar
  65. 65.
    Iuliano, L., Pratico, D., Ferro, D., Pittoni, V., Valesini, G., Lawson, J., FitzGerald, G. A., and Violi, F. (1997) Enhanced lipid peroxidation in patients positive for antiphospholipid antibodies. Blood 90, 3931–3935.PubMedGoogle Scholar
  66. 66.
    Hoffman, S. W., Roof, R. L., and Stein, D. G. (1996) A reliable and sensitive enzyme immunoassay method for measuring 8-isoprostaglandin: a marker for lipid peroxidation after experimental brain injury. J. Neurosci. Methods 68, 133–136.PubMedCrossRefGoogle Scholar
  67. 67.
    Cotton, R. B., Morrow, J. D., Hazinski, T. A., Roberts, L. J., II, Law, A. B., and Steele, S. (1996) F2-isoprostanes (F2I) in tracheobronchial aspirate fluid (TBAF) indicate association between increased FIO2 and lipid peroxidation in the lungs of premature infants. Ped. Res. 39, 329A.Google Scholar
  68. 68.
    Markesberry, W. R. (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Rad. Biol. Med. 23, 134–147.CrossRefGoogle Scholar
  69. 69.
    Montine, T. J., Markesbery, W. R., Morrow, J. D., and Roberts, L. J., II (1998) Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer’s disease. Annals Neurol., in press.Google Scholar
  70. 70.
    Reilly, M, Delanty, N., Lawson, J. A., and FitzGerald, G. A. (1996) Modulation of oxidant stress in vivo in chronic cigarette smokers. Circulation 94, 19–25.PubMedGoogle Scholar
  71. 71.
    O’Connor, D. E., Mihelich, E. D., and Coleman, M. C. (1981) Isolation and characterization of bicycloendoperoxides derived from methyl linlenate. J. Am. Chem. Soc. 103, 222–224.CrossRefGoogle Scholar
  72. 72.
    Morrow, J. D., Badr, K. F., and Roberts, L. J., II (1994) Evidence that the F2-isoprostane, 8-epi-PGF, is formed in vivo. Biochim. Biopyhs. Acta 1210, 244–248.Google Scholar
  73. 73.
    Morrow, J. D., Minton, T. A., and Roberts, L. J., II (1992) The F2-isoprostane, 8-epi-prostaglandin F, a potent agonist of the vascular thromboxane/endoperoxide receptor, is a platelet thromboxane/endoperoxide receptor antagonist. Prostaglandins 44, 155–163.PubMedCrossRefGoogle Scholar
  74. 74.
    Yin, K., Halushka, P. V., Yan, Y.-T., and Wong, P. Y.-K. (1994) Antiaggregatory activity of 8-epi-prostaglandin F and other F-series prostanoids and their binding to thromboxane A2/prostaglandin H2 receptors in human platelets. J. Pharmacol. Exp. Therap. 270, 1192–1196.Google Scholar
  75. 75.
    Longmire, A. W., Roberts, L. J., II, and Morrow, J. D. (1994) Actions of the E2-isoprostane, 8-iso-PGE2, on the platelet thomboxane/endoperoxide receptor in humans and rats: additional evidence for the existence of a unique isoprostane receptor. Prostaglandins 48, 247–256.PubMedCrossRefGoogle Scholar
  76. 76.
    Fukunaga, M., Makita, N., Roberts, L. J., II, Morrow, J. D., Takahashi, K., and Badr, K. F. (1993) Evidence for the existence of F2-isoprostane receptors on rat vascular smooth muscle cells. Am. J. Physiol. 263 (Cell Physiol. 33), C1619–C1624.Google Scholar
  77. 77.
    Fukunaga, M., Yura, T., Grygorczyk, R., and Badr, K. F. (1997) Evidence for the distinct nature of F2-isoprostane receptors from those of thromboxane A2. Am. J. Physiol. 272, F477–483.PubMedGoogle Scholar
  78. 78.
    Lahaie, E., Hardy, P., Hou, X., Hassessian, H., Asselin, P., Lachapelle, P., Almazan, G., Varma, D. R., Morrow, J. D., Roberts, L. J., II, and Chemtob, S. (1998) A novel mechanism for vasoconstrictor action of 8-iso-prostaglandin F on retinal vessels. Am. J. Physiol. 274 (Regulatory Integrative Comp. Physiol. 43), R1406–R1416.PubMedGoogle Scholar
  79. 79.
    Kinsella, B. T., O’Mahony, D. J., and FitzGerald, G. A. (1997) The human thromboxane A2 receptor α-isoform (TPα) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi-prostaglandin F. J. Pharmacol. Exp. Therap. 281, 957–964.Google Scholar
  80. 80.
    Kromer, B. M. and Tippins, J. R. (1996) Coronary artery constriction by the isoprostane 8-epi-prostaglandin F. Br. J. Pharmacol. 119, 1276–1280.PubMedGoogle Scholar
  81. 81.
    Banerjee, M., Kang, K. H., Morrow, J. D., Roberts, L. J., II, and Newman, J. H. (1992) Effects of a novel non-cyclooxygenase derived prostaglandin, 8-epi-PGF, in rabbit lung in situ. Am. J. Physiol 263 (Heart Circ. Physiol. 32), H660–H663.PubMedGoogle Scholar
  82. 82.
    Kang, H. K., Morrow, J. D., Roberts, L. J., II, Newman, J. H., and Banerjee, M. (1993) Airway and vascular effects of 8-epi-prostaglandin F, in isolated perfused rat lung. J. Appl. Physiol. 74, 460–465.PubMedGoogle Scholar
  83. 83.
    Hoffman, S. W., Moore, S., and Ellis, E. F. (1997) Isoprostanes: free radical-generated prostaglandins with constrictor effects on cerebral arterioles. Stroke 28, 844–849.PubMedGoogle Scholar
  84. 84.
    Kawikova, I., Barnes, P. J., Takahashi, T., Tadkjkarimi, S., Yacoub, M. H., and Belvisi, M. G. (1996) 8-Epi-PGF, a novel noncyclooxygenase-derived prostaglandin, constricts airways in vitro. Am. J. Resp. Crit. Care Med. 153, 590–596.PubMedGoogle Scholar
  85. 85.
    Okazawa, A., Kawikova, I., Cui, Z. H., Skoogh, B. E., and Lotvall, J. (1997) 8-Epi-PGF induces airflow obstruction and airway plasma exudation in vivo. Am. J. Resp. Crit. Care Med 155, 436–441.PubMedGoogle Scholar
  86. 86.
    Sinzinger, H., Oguogho, A., and Kaliman, J. (1997) Isoprostane 8-epi-prostaglandin F is a potent contractor of human peripheral lymphatics. Lymphology 30, 155–159.PubMedGoogle Scholar
  87. 87.
    Mobert, J., Becker, B. F., Zahler, S., and Gerlach, E. (1997) Hemodynamic effects of iosoprostanes (8-iso-prostaglandin F and E2) in isolated guinea pig hearts. J. Cardiovasc. Pharmacol. 29, 789–794.PubMedCrossRefGoogle Scholar
  88. 88.
    Marley, R., Harry, D., Anand, R., Fernando, B., Davies, S., and Moore, K. P. (1997) 8-isoprostaglandin F, a product of lipid peroxidation, increases portal pressure in normal and cirrhotic rats. Gastroenterology 112, 208–213.PubMedCrossRefGoogle Scholar
  89. 89.
    Gomoll, A. W. and Ogletree, M. L. (1994) Failure of aspirin to interfere with the cardioprotective effects of ifetroban. Eur. J. Pharmacol. 271, 471–479.PubMedCrossRefGoogle Scholar
  90. 90.
    Fukunaga, M., Yura, T., and Badr, K. F. (1995) Stimulatory effect of 8-epi-PGF, an F2-isoprostane, on endothelin-1 release. J. Cardiovasc. Pharmacol. 26(Suppl. 3), S51–S52.PubMedGoogle Scholar
  91. 91.
    Hart, C. M, Karman, R. J., Blackburn, T. L., Gupta, M. P., Garcia, J. G., and Mohler, E. R., III. (1998) Role of 8-epi-PGF, 8-isoprostane, in H2O2-induced derangements of pulmonary artery endothelial cell barrier function. Prostaglandins Leukotrienes Essent. Fatty Acids 58, 9–16.CrossRefGoogle Scholar
  92. 92.
    Parhami, F., Morrow, A. D., Balucan, J., Leitinger, N., Watson, A. D., Tintut, Y., Berliner, J. A., and Demer, L. L. (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. Arterioscler. Thromb. Vasc. Biol. 17, 680–687.PubMedGoogle Scholar
  93. 93.
    Wagner, R. S., Weare, C., Jin, N., Mohler, E. R., and Rhoades, R. A. (1997) Characterization of signal transduction events stimulated by 8-epi-prostaglandin (PG)F in rat aortic rings. Prostaglandins 54, 581–599.PubMedCrossRefGoogle Scholar
  94. 94.
    Elmhurst, J. L., Betti, P.-A., and Ragachari, P. K. (1997) Intestinal effects isoprostanes: evidence for involvement of prostanoid EP and TP receptors. J. Pharmacol. Exp. Therap. 283, 1198–1205.Google Scholar
  95. 95.
    Kunapuli, P., Lawson, J. A., Rokach, J., and FitzGerald, G. A. (1997) Functional characterization of the ocular prostaglandin F (PGF) receptor. J. Biol. Chem. 272, 27,147–27,154.PubMedCrossRefGoogle Scholar
  96. 96.
    Honn, K. V. and Marnett, L. J. (1985) Requirement of a reactive α,βunsaturated carbonyl for inhibition of tumor growth and induction of differentiation by “A” series prostaglandins. Biochim. Biophys. Res. Commun. 129, 23–40.CrossRefGoogle Scholar
  97. 97.
    Chatterjee, S. N. and Agarwal, S. (1988) Liposomes as membrane model for study of lipid peroxidation. Free Rad. Biol. Med. 4, 51–72.PubMedCrossRefGoogle Scholar
  98. 98.
    Applegate, K. R. and Glomset, J. A. (1986) Computer-based modeling of the conformation and packing properties of docosahexaenoic acid. J. Lipid Res. 27, 658–680.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • L. Jackson RobertsII
  • Cynthia J. Brame
  • Yan Chen
  • Jason D. Morrow

There are no affiliations available

Personalised recommendations