Skip to main content

Sedimentation Analysis of Bacterial Nucleoid Structure

  • Protocol
  • First Online:
DNA Topoisomerase Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 94))

  • 1058 Accesses

Abstract

The physiology of bacterial DNA topoisomerases can be studied by examining how perturbation of intracellular enzyme activities affects the structure of extracted nucleoids. Since the few DNA nicks that occur when nucleoids are isolated (1,2) are localized by the presence of 50–100 barriers to strand rotation (2,3), it is possible to recover chromosomal DNA in which most of each molecule is topologically constrained (2,4). Consequently, intracellular changes in topoisomerase activity can be detected as differences in the average supercoiling of nucleoids isolated from cells perturbed in different ways. This general strategy has been used to show that supercoiling is relaxed by inhibition of gyrase (5-7) and that it is increased (becomes more negative) by point mutations in topA (the gene encoding topoisomerase I), by low concentrations of gyrase inhibitors, and by anaerobic conditions (6,8-10). Experiments of this type have contributed to the conclusions that (1) supercoiling is controlled in part by regulated expression of the gyrase and topoisomerase I genes, and (2) the overall level of supercoiling responds to growth environment (reviewed in [11]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stonington, O. G. and Pettijohn, D. E. (1971) The folded genome of Escherichia coli isolated in a protein–DNA–RNA complex. Proc. Natl. Acad. Sci. USA 68, 6–9.

    Article  CAS  Google Scholar 

  2. Worcel, A. and Burgi, E. (1972) On the structure of the folded chromosome of Escherichia coli. J. Mol. Biol., 71, 127–147.

    Article  CAS  Google Scholar 

  3. Sinden, R. R. and Pettijohn, D. E. (1981) Chromosomes in living Escherichia coli cells are segregated into domains of supercoiling. Proc. Natl. Acad. Sci. USA 78, 224–228.

    Article  CAS  Google Scholar 

  4. Pettijohn, D. and Hecht, R. (1973) RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling. Cold Spring Harbor Symp. Quant. Biol. 38, 31–41.

    Article  Google Scholar 

  5. Drlica, K. and Snyder, M. (1978) Superhelical Escherichia coli DNA: relaxation by coumermycin. J. Mol. Biol. 120, 145–154.

    Article  CAS  Google Scholar 

  6. Manes, S. H., Pruss, G. J., and Drlica, K. (1983) Inhibition of RNA synthesis by oxolinic acid is unrelated to average DNA supercoiling. J. Bacteriol. 155, 420–423.

    Article  CAS  Google Scholar 

  7. Steck, T. R., Pruss, G. J., Manes, S. H., Burg, L., and Drlica, K. (1984) DNA supercoiling in gyrase mutants. J. Bacteriol. 158, 397–403.

    Article  CAS  Google Scholar 

  8. Pruss, G. J., Manes, S. H., and Drlica, K. (1982) Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 31, 35–42.

    Article  CAS  Google Scholar 

  9. Pruss, G., Franco, R., Chevalier, S., Manes, S., and Drlica, K. (1986) Effects of DNA gyrase inhibitors in Escherichia coli topoisomerase I mutants. J. Bacteriol. 168, 276–282.

    Article  CAS  Google Scholar 

  10. Hsieh, L.-S., Burger, R. M., and Drlica, K. (1991) Bacterial DNA supercoiling and (ATP)/(ADP): changes associated with a transition to anaerobic growth. J. Mol. Biol. 219, 443–450.

    Article  CAS  Google Scholar 

  11. Drlica, K. (1992) Control of bacterial DNA supercoiling. Mol. Microbiol. 6, 425–433.

    Article  CAS  Google Scholar 

  12. Kato, J.-I., Suzuki, H., and Ikeda, H. (1992) Purification and characterization of DNA topoisomerase IV in Escherichia coli. J. Biol. Chem. 267, 25,676–25,684.

    Article  CAS  Google Scholar 

  13. Worcel, A. and Burgi, E. (1974) Properties of a membrane-attached form of the folded chromosome of Escherichia coli. J. Mol. Biol. 82, 91–105.

    Article  CAS  Google Scholar 

  14. Kornberg, T., Lockwood, A., and Worcel, A. (1974) Replication of the Escheri-chia coli chromosome with a soluble enzyme system. Proc. Natl. Acad. Sci. USA 71, 3189–3193.

    Article  CAS  Google Scholar 

  15. Drlica, K., Burgi, E., and Worcel, A. (1978) Association of the folded chromosome with the cell envelope of Escherichia coli: characterization of membrane-associated DNA. J. Bacteriol. 134, 1108–1116.

    Article  CAS  Google Scholar 

  16. Gellert, M., Mizuuchi, K., O’Dea, M. H., Itoh, T., and Tomizawa, J.-L. (1977) Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc. Natl. Acad. Sci. USA 74, 4772–4776.

    Article  CAS  Google Scholar 

  17. Sugino, A., Peebles, C., Kruezer, K., and Cozzarelli, N. (1977) Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci. USA 74, 4767–4771.

    Article  CAS  Google Scholar 

  18. Peng, H. and Marians, K. (1993) Escherichia coli topoisomerase IV: purification, characterization, subunit structure, and subunit interactions. J. Biol. Chem. 268, 24,481–24,490.

    Article  CAS  Google Scholar 

  19. Hoshino, K., Kitamura, A., Morrissey, I., Sato, K., Kato, J.-I., and Ikeda, H. (1994) Comparison of inhibition of Escherichia coli topoisomerase IV by quinolones with DNA gyrase inhibition. Antimicrob. Agents Chemother. 38, 2623–2627.

    Article  CAS  Google Scholar 

  20. Snyder, M. and Drlica, K. (1979) DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid. J. Mol. Biol. 131, 287–302.

    Article  CAS  Google Scholar 

  21. Chen, C.-R., Malik, M., Snyder, M., and Drlica, K. (1996) DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J. Mol. Biol. 258, 627–637.

    Article  CAS  Google Scholar 

  22. Drlica, K., Pruss, G., Burger, R., Franco, R., Hsieh, L.-S., and Berger, B. (1990) Roles of DNA topoisomerases in bacterial chromosome structure and function, in The Bacterial Chromosome, (Drlica, K. and Riley, M., eds.), American Society for Microbiology, Washington, DC, pp. 195–204.

    Google Scholar 

  23. Miller, J. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  24. Bauer, W. and Vinograd, J. (1968) The interaction of closed circular DNA with intercalative dyes. J. Mol. Biol. 33, 141–176.

    Article  CAS  Google Scholar 

  25. Hinton, D. and Bode, V. (1975) Purification of closed circular lambda deoxyri-bonucleic acid and its sedimentation properties as a function of sodium chloride concentration and ethidium binding. J. Biol. Chem. 250, 1071–1079.

    Article  CAS  Google Scholar 

  26. Hinton, D. and Bode, V. (1975) Ethidium binding affinity of circular lambda deoxyribonucleic acid determined fluorometrically. J. Biol. Chem. 250, 1061–1070.

    Article  CAS  Google Scholar 

  27. Drlica, K., Franco, R., and Steck, T. (1988) Rifampicin and rpoB mutations can alter DNA supercoiling in Escherichia coli. J. Bacteriol. 170, 4983–4985.

    Article  CAS  Google Scholar 

  28. Drlica, K., Pruss, G.J., Manes, S.H., and Chevalier, S.G. (1986) DNA topoisomerase mutations in bacteria, in Bacterial Chromatin, (Gualerzi, C., ed.), Springer-Verlag, Berlin, pp. 52–63.

    Chapter  Google Scholar 

  29. van Holde, K. E. V. (1971) Physical Biochemistry. Prentice-Hall, London, p. 246.

    Google Scholar 

  30. Bowen, B. (1977) PhD Thesis, University of California, San Diego.

    Google Scholar 

  31. Burgi, E. and Hershey, A. D. (1963) Sedimentation rate as a measure of molecular weight. Biophys. J. 3, 309–321.

    Article  CAS  Google Scholar 

  32. Korba, B., Hays, J. B., and Boehmer, S. (1981) Sedimentation velocity of DNA in isokinetic sucrose gradients: calibration against molecular weight using fragments of defined length. Nucleic Acids Res. 9, 4403–4412.

    Article  CAS  Google Scholar 

  33. Clark, R.W. and Lange, C. (1976) The sucrose gradient and native DNA S20,w, an examination of measurement problems. Biochim. Biophys. Acta. 454, 567–577.

    Article  CAS  Google Scholar 

  34. Drlica, K. and Worcel, A. (1975) Conformational transitions in the Escherichia coli chromosome: analysis by viscometry and sedimentation. J. Mol. Biol. 98, 393–411.

    Article  CAS  Google Scholar 

  35. Cummings, D. (1964) Sedimentation and biological properties of T-phages of Escherichia coli. Virology 23, 408–418.

    Article  CAS  Google Scholar 

  36. Appleby, D. W., Rall, S. C., and Hearst, J. E. (1976) The S20,w of unsheared DNA from whole cell lysates of Escherichia coli. Biophys. Chem. 5, 271–283.

    Article  CAS  Google Scholar 

  37. Zimm, B. (1974) Anomalies in sedimentation. IV. Decrease in sedimentation coefficients of chains at high fields. Biophys. Chem. 1, 279–291.

    Article  CAS  Google Scholar 

  38. Zimm, B. H. and Schumaker, V. N. (1976) Anomalies in sedimentation. V. Chains at high fields, practical consequences. Biophys. Chem. 5, 265–270.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Drlica, K., Chen, CR., Kayman, S. (1999). Sedimentation Analysis of Bacterial Nucleoid Structure. In: Bjornsti, MA., Osheroff, N. (eds) DNA Topoisomerase Protocols. Methods in Molecular Biology, vol 94. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-259-7:87

Download citation

  • DOI: https://doi.org/10.1385/1-59259-259-7:87

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-444-0

  • Online ISBN: 978-1-59259-259-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics