Overexpression and Purification of Bacterial DNA Gyrase

  • Anthony Maxwell
  • Alison J. Howells
Part of the Methods in Molecular Biology™ book series (MIMB, volume 94)

Abstract

DNA gyrase is the bacterial type II topoisomerase that can introduce negative supercoils into DNA using the free energy of ATP hydrolysis (1,2). The enzyme from Escherichia coli consists of two proteins, A and B (termed GyrA and GyrB), of molecular masses 97 and 90 kDa, respectively; the active enzyme is an A2B2 complex. All DNA topoisomerases are able to relax negatively supercoiled DNA, but only gyrase can also catalyze the introduction of negative supercoils, in a reaction coupled to ATP hydrolysis. Mechanistic studies have identified the steps involved in the supercoiling reaction. Briefly, this involves the wrapping of DNA around the A2B2 complex, cleavage of this DNA in both strands (involving the formation of DNA–protein covalent bonds), and passage of another segment of DNA through this double-stranded break. Resealing of the break results in the introduction of two negative supercoils. Catalytic supercoiling requires the hydrolysis of ATP.

Keywords

Vortex Urea Recombination Epoxy Bacillus 

References

  1. 1.
    Reece, R. J. and Maxwell, A. (1991) DNA gyrase: structure and function. CRC Crit. Rev. Biochem. Mol. Biol. 26, 335–375.CrossRefGoogle Scholar
  2. 2.
    Wigley, D. B. (1995) Structure and mechanism of DNA gyrase, in Nucleic Acids and Molecular Biology (Eckstein, F. and Lilley, D. M. J., eds.), Springer-Verlag, Berlin, pp. 165–176.Google Scholar
  3. 3.
    Reece, R. J. and Maxwell, A. (1989) Tryptic fragments of the Escherichia coli DNA gyrase A protein. J. Biol. Chem. 264, 19,648–19,653.PubMedGoogle Scholar
  4. 4.
    Reece, R. J. and Maxwell, A. (1991) Probing the limits of the DNA breakage-reunion domain of the Escherichia coli DNA gyrase A protein. J. Biol. Chem. 266, 3540–3546.PubMedGoogle Scholar
  5. 5.
    Reece, R. J. and Maxwell, A. (1991) The C-terminal domain of the Escherichia coli DNA gyrase A subunit is a DNA-binding protein. Nucleic Acids Res. 19, 1399–1405.PubMedCrossRefGoogle Scholar
  6. 6.
    Brown, P. O., Peebles, C. L., and Cozzarelli, N. R. (1979) A topoisomerase from Escherichia coli related to DNA gyrase. Proc. Natl. Acad. Sci. USA 76, 6110–6114.PubMedCrossRefGoogle Scholar
  7. 7.
    Gellert, M., Fisher, L. M., and O’Dea, M. H. (1979) DNA gyrase: purification and catalytic properties of a fragment of gyrase B protein. Proc. Natl. Acad. Sci. USA 76, 6289–6293.PubMedCrossRefGoogle Scholar
  8. 8.
    Adachi, T., Mizuuchi, M., Robinson, E. A., Appella, E., O’Dea, M. H., Gellert, M., and Mizuuchi, K. (1987) DNA sequence of the E. coli gyrB gene: application of a new sequencing strategy. Nucleic Acids Res. 15, 771–784.PubMedCrossRefGoogle Scholar
  9. 9.
    Ali, J. A., Jackson, A. P., Howells, A. J., and Maxwell, A. (1993) The 43-kDa N-terminal fragment of the gyrase B protein hydrolyses ATP and binds coumarin drugs. Biochemistry 32, 2717–2724.PubMedCrossRefGoogle Scholar
  10. 10.
    Wigley, D. B., Davies, G. J., Dodson, E. J., Maxwell, A., and Dodson, G. (1991) Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351, 624–629.PubMedCrossRefGoogle Scholar
  11. 11.
    Drlica, K. and Coughlin, S. (1989) Inhibitors of DNA gyrase. Pharmacol. Ther. 44, 107–121.PubMedCrossRefGoogle Scholar
  12. 12.
    Rádl, S. (1990) Structure–activity relationships in DNA gyrase inhibitors. Pharmacol. Ther. 48, 1–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Maxwell, A. (1992) The molecular basis of quinolone action. J. Antimicrob. Chemother. 30, 409–416.PubMedCrossRefGoogle Scholar
  14. 14.
    Maxwell, A. (1993) The interaction between coumarin drugs and DNA gyrase. Mol. Microbiol. 9, 681–686.PubMedCrossRefGoogle Scholar
  15. 15.
    Lewis, R. J., Singh, O. M. P., Smith, C. V., Skarynski, T., Maxwell, A., Wonacott, A. J., and Wigley, D. B. (1996) The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. EMBO J. 15, 1412–1420.PubMedGoogle Scholar
  16. 16.
    Gellert, M., Mizuuchi, K., O’Dea, M. H., and Nash, H. A. (1976) DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. USA 73, 3872–3876.PubMedCrossRefGoogle Scholar
  17. 17.
    Mizuuchi, K., O’Dea, M. H., and Gellert, M. (1978) DNA gyrase: subunit structure and ATPase activity of the purified enzyme. Proc. Natl. Acad. Sci. USA 75, 5960–5963.PubMedCrossRefGoogle Scholar
  18. 18.
    Mizuuchi, K., Mizuuchi, M., O’Dea, M. H., and Gellert, M. (1984) Cloning and simplified purification of Escherichia coli DNA gyrase A and B proteins. J. Biol. Chem. 259, 9199–9201.PubMedGoogle Scholar
  19. 19.
    Hallett, P., Grimshaw, A. J., Wigley, D. B., and Maxwell, A. (1990) Cloning of the DNA gyrase genes under tac promoter control: overproduction of the gyrase A and B proteins. Gene 93, 139–142.PubMedCrossRefGoogle Scholar
  20. 20.
    Stark, M. J. R. (1987) Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. Gene 51, 255–267.PubMedCrossRefGoogle Scholar
  21. 21.
    Ali, J. A., Orphanides, G., and Maxwell, A. (1995) Nucleotide binding to the 43-kilodalton N-terminal fragment of the DNA gyrase B protein. Biochemistry 34, 9801–9808.PubMedCrossRefGoogle Scholar
  22. 22.
    Gilbert, E. J. and Maxwell, A. (1994) The 24 kDa N-terminal sub-domain of the DNA gyrase B protein binds coumarin drugs. Mol. Microbiol. 12, 365–373.PubMedCrossRefGoogle Scholar
  23. 23.
    Staudenbauer, W. L. and Orr, E. (1981) DNA gyrase: affinity chromatography on novobiocin-Sepharose and catalytic properties. Nucleic Acids Res. 9, 3589–3603.PubMedCrossRefGoogle Scholar
  24. 24.
    Orr, E. and Staudenbauer, W. L. (1982) Bacillus subtilis DNA gyrase: purification of subunits and reconstitution of supercoiling activity. J. Bacteriol. 151, 524–527.PubMedGoogle Scholar
  25. 25.
    Thiara, A. and Cundliffe, E. (1988) Cloning and characterization of a DNA gyrase B gene from Streptomyces sphaeroides that confers resistance to novobiocin. EMBO J. 7, 2255–2259.PubMedGoogle Scholar
  26. 26.
    Maxwell, A. and Gellert, M. (1984) The DNA dependence of the ATPase activity of DNA gyrase. J. Biol. Chem. 259, 14,472–14,480.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Anthony Maxwell
    • 1
  • Alison J. Howells
    • 1
  1. 1.Department of BiochemistryUniversity of LeicesterLeicesterUK

Personalised recommendations