Determination of the Endothelial Barrier Function In Vitro

  • Geerten P. Van Nieuw Amerongen
  • Victor W. M. Van Hinsbergh
Part of the Methods in Molecular Biology book series (MIMB, volume 96)


Endothelial cells forming the inner lining of all blood vessels are actively involved in the regulation of the extravasation of fluid, macromolecules, hormones, and leukocytes. Only a few decades ago, it was thought that the endo-thelium functioned as a passive semipermeable barrier, but nowadays it is generally recognized that the endothelial cells actively and semiselectively play a pivotal role in the regulation of the passage of nutrients, hormones, and mac-romolecules. Over the past several years, the concept has emerged that the increase in endothelial permeability induced by vasoactive compounds, such as histamine and thrombin, is owing to intercellular gap formation. On the one hand, this is caused by contractile forces generated in the cell margins by actin- nonmuscle myosin interaction (1,2). On the other hand, alteration in cell-cell and cell-matrix interactions affect the endothelial barrier function (3).


Human Serum Albumin Permeability Coefficient Human Endothelial Cell M199 Medium Lower Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schnittler, H.-J., Wilke, A., Gress, T. Suttorp, N., and Drenckhahn, D. (1990) Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium. J. Physiol. 431, 379–401.PubMedGoogle Scholar
  2. 2.
    Garcia, J. G. N. and Schaphorst, K. L. (1995) Regulation of endothelial gap formation end paracellular permeability. J. Invest. Med. 43, 117–126.Google Scholar
  3. 3.
    Lampugnani, M. G., Resnati, M., Dejana, E., and Marchisio, P. C. (1991) The role of integrins in the maintenance of endothelial monolayer integrity. J. Cell. Biol. 112, 479–490.PubMedCrossRefGoogle Scholar
  4. 4.
    Maciag, T., Cerundolo, J., Ilsey, S., Kelley, P. R., and Forand, R. (1979) An endothelial growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl. Acad. Sci. USA 76, 5674–5678.PubMedCrossRefGoogle Scholar
  5. 5.
    Vuento, M. and Vaheri, A. (1979) Purification of fibronectin from human plasma by affinity chromatography under non-denaturating conditions. Biochem. J. 183, 331–337.PubMedGoogle Scholar
  6. 6.
    Langeler, E. G. and Van Hinsbergh, V. W. M. (1988) Characterization of an vitro model to study the permeability of human endothelial cell monolayers. Thromb. Haemostas. 60, 240–246.Google Scholar
  7. 7.
    Langeler, E. G. and Van Hinsbergh, V. W. M. (1991) Nor-epinephrine and iloprost improve the barrier function of human artery endothelial cell monolayers. Evidence for a cyclic AMP-dependent and independent process. Am. J. Physiol. 260, C1052–C1059.PubMedGoogle Scholar
  8. 8.
    Jaffe, E. A., Nachman, R. L., Becker, C. G., and Minick, C. R. (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745–2756.PubMedCrossRefGoogle Scholar
  9. 9.
    Van Hinsbergh, V. W. M., Scheffer, M. A., and Langeler, E. G., (1990) Macro-and microvascular endothelial cells from human tissues, in Cell Culture Techniques in Heart and Vessel Research (H. M., Piper, ed.), Springer-Verlag, Berlin, pp. 178–204.Google Scholar
  10. 10.
    Westendorp, R. G. J., Draijer, R., Meinders, A. E., and Van Hinsbergh, V. W. M. (1994) Cyclic GMP mediated decrease in permeability of human umbilical and pulmonary artery endothelial cells. J. Vascular Res. 31, 42–51.Google Scholar
  11. 11.
    Draijer, R., Atsma, D.E., Van der Laarse, A., and Van Hinsbergh, V.W.M.(1995) GMP and nitric oxide modulate thrombin-induced endothelial permeability. Circ. Res. 76, 199–208.PubMedGoogle Scholar
  12. 12.
    Draijer, R., Vaandraager, A. R., Nolte, C., De Jonge, H. G., Walter, U., and Van Hinsbergh, V. W. M. (1995) Expression of cGMP-dependent protein kinase I and phpsphorylation of its substrate VASP in human endothelial cells of different origin. Circ. Res. 77, 897–905.PubMedGoogle Scholar
  13. 13.
    Navab, M., Hough, G. P., Berliner, J. A., Frank, J. A., Fogelman, A. M., Haberland, M. E., and Edwards, P. A. (1986) Rabbit beta-migrating very low density lipoprotein increases endothelial macromolecular transport without altering electrical resistance. J. Clin. Invest. 78, 389–397.PubMedCrossRefGoogle Scholar
  14. 14.
    Shasby, D. M., Lind, S. E., Shasby, S. S., Goldsmith, J. C., and Hunninghake, G. W. (1985) Reversible oxidant-induced increases in albumin transfer across cultured endothelium: alterations in cell shape and calcium homeostasis. Blood 65, 605–614.PubMedGoogle Scholar
  15. 15.
    Garcia, J. G. N., Siflinger-Birnboim, A., Bizios, R., Del Vecchio, P. J., Fenton, J. W., II, and Malik, A. B. (1986) Thrombin-induced increase in albumin permeability across the endothelium. J. Cell. Physiol. 128, 96–104.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Geerten P. Van Nieuw Amerongen
    • 1
  • Victor W. M. Van Hinsbergh
    • 1
  1. 1.Gaubius LaboratoryTNO-PGLeidenThe Netherlands

Personalised recommendations