Advertisement

Measurement of Intracellular Calcium Concentration Using Confocal Microscopy

  • Carmen Perez-Terzic
  • Marisa Jaconi
  • Lisa Stehno-Bittel
Part of the Methods in Molecular Biology™ book series (MIMB, volume 114)

Abstract

Many cellular functions are tightly regulated by intracellular calcium concentrations ([Ca2+]i), and, therefore, the measurement of [Ca2+]i is of critical importance. To determine Ca2+-related cellular dynamics accurately, it is necessary to measure three-dimensionally resolved [Ca2+]i with sufficient temporal resolution to follow fast cellular responses that generate signal pulses and wave propagation. Several techniques have been developed to assay [Ca2+]i, but a revolution in the study of intracellular [Ca2+]i occurred when fluorescent dyes for Ca2+ were developed (1). Since then, fluorescent dyes and fluorescent microscopy have been used to observe resting and nonresting [Ca2+] in intact cells as well as in subcellular fractions.

Keywords

Nuclear Envelope High Numerical Aperture Female Frog Sufficient Temporal Resolution Back Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tsien, R. Y. (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis and properties of prototype structures. Biochem. 19, 2396–2404.CrossRefGoogle Scholar
  2. 2.
    Minsky, M. L. (1988) Memoir on inventing the confocal scanning microscope. Scanning 10, 128–138.Google Scholar
  3. 3.
    Denk, W., Strickler, J., and Webb, W. W. (1990) Two-photon laser scanning fluorescence microscopy. Science 248, 73–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Denk, W., Delaney, K. R., Gelperin, A., Kleinfeld, D., Strowbridge, B. W., Tank D. W., and Yuste, R. (1994) Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci. Methods 54, 152–162.CrossRefGoogle Scholar
  5. 5.
    Piston, D. W., Masters, B. R., and Webb, W. W. (1995) Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy. J. Microsc. 178, 20–27.PubMedGoogle Scholar
  6. 6.
    Piston, D. W., Kirby, M. S., Cheng, J., Lederer, W. J., and Webb, W. W. (1994) Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity. Appl. Opt. 33, 662–669.PubMedCrossRefGoogle Scholar
  7. 7.
    Denk, W. (1994) Two-photon scanning photochemical microscopy: Mapping ligand-gated ion channel distributions. Proc. Natl. Acad. Sci. USA 91, 6629–6633.PubMedCrossRefGoogle Scholar
  8. 8.
    Parker, I., Callamaras, N., and Wier, W. G. (1997) A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies. Cell Calcium 21, 441–452.PubMedCrossRefGoogle Scholar
  9. 9.
    Tsien, R. Y. (1989) Fluorescent indicators of ion concentrations, in Methods Cell Biology (Taylor, D. and Wang, Y. L., eds.), Academic, San Diego, pp. 127–156.Google Scholar
  10. 10.
    Parker, I. and Ivorra, I. (1993) Confocal microfluorimetry of Ca2+ signals evoked in Xenopus oocytes by photoreleased inositol trisphosphate. J. Physiol. 461, 133–165.PubMedGoogle Scholar
  11. 11.
    Perez-Terzic, C., Stehno-Bittel, L., and Clapham, D. E. (1997) Nucleoplasmic and cytoplasmic differences in the fluorescence properties of the calcium indicator Fluo-3. Cell Calcium 21, 275–282.PubMedCrossRefGoogle Scholar
  12. 12.
    Tsien, R. Y. and Waggoner, A. (1990) Handbook of Biological Confocal Microscopy, 2nd ed. (Pawley, J., ed.), Plenum, New York, pp. 169–178.Google Scholar
  13. 13.
    Laurent, M., Johannin, G., Gilbert, N., Lucas L., Cassio, D., Petit, P., and Gleury, A. (1994) Power and limits of laser scanning confocal microscopy. Biol. Cell 80, 229–240.PubMedCrossRefGoogle Scholar
  14. 14.
    Huang, X. Y., Morielli, A. D., and Peralta, E. G. (1993) Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor. Cell 75, 1145–1156.PubMedCrossRefGoogle Scholar
  15. 15.
    Cran, D. G. (1987) The distribution of organelles in mammalian oocytes following centrifugation prior to injection of foreign DNA. Gamete Res. 18, 67–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Han J. K. and Nuccitelli R. (1990) Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis. J. Cell Biol. 110, 1103–1110.PubMedCrossRefGoogle Scholar
  17. 17.
    Ruberti, I., Beccari, E., and Carnevalli, F. (1989) Large scale isolation of nuclei from oocytes of Xenopus laevis. Analytical Biochem. 180, 177–180.CrossRefGoogle Scholar
  18. 18.
    Dreyer, C., Singer, H., and Hausen, P. (1981) Tissue specific antigens in the germinal vesicle of Xenopus laevis oocytes. Wilhelm Roux Arch. 190, 197–207.CrossRefGoogle Scholar
  19. 19.
    Gard, D. L., (1991) Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes: A study by confocal immunofluorescence microscopy. Dev. Biol. 143, 346–362.PubMedCrossRefGoogle Scholar
  20. 20.
    Neher, E. (1988) The influence of intracellular calcium concentration on degranulation of dialyzed mast cells from rat peritoneum. J. Physiol. 395, 193–214.PubMedGoogle Scholar
  21. 21.
    Hernandez-Cruz, A., Sala, F., and Adams, P. R. (1990) Subcellular calcium transients visualized by confocal microscopy in a voltage-clamped vertebrate neuron. Science 247, 858–862.PubMedCrossRefGoogle Scholar
  22. 22.
    Himpens, B., De Smedt, H., Droogmans, G., and Casteels, R. (1992) Differences in regulation between nuclear and cytoplasmic calcium in cultured smooth muscle cells. Am. J. Physiol. 263, C95–C105.PubMedGoogle Scholar
  23. 23.
    Stehno-Bittel, L., Perez-Terzic, C., and Clapham, D. E. (1995) Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 270, 1835–1838.PubMedCrossRefGoogle Scholar
  24. 24.
    Helm, P. J., Franksson, O., and Carlsson, K. (1995) A confocal scanning laser microscope for quantitative ratiometric 3D measurements of [Ca2+] and Ca2+ diffusions in living cells stained with Fura-2. Plugers Arch. 429, 672–681.CrossRefGoogle Scholar
  25. 25.
    Lee, M. A., Dunn, R., Clapham, D. E., and Stehno-Bittel, L. (1997) Regulation of the nuclear pore complex by nuclear Ca2+. Cell Calcium, in press.Google Scholar
  26. 26.
    Stehno-Bittel, L., Luckhoff, A., and Clapham, D. E. (1995) Calcium release from the nucleus by InsP3 receptor channels. Neuron 14, 163–167.PubMedCrossRefGoogle Scholar
  27. 27.
    Lechleiter, J. D., Girard, S., Peralta, E., and Clapham, D. E. (1991) Spiral calcium wave propagation and annihilation in Xenopus oocytes. Science 252, 123–126.PubMedCrossRefGoogle Scholar
  28. 28.
    Lechleiter, J. D. and Clapham, D. E. (1992) Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69, 283–294.PubMedCrossRefGoogle Scholar
  29. 29.
    Cran, D. G (1987) The distribution of organelles in mammalian oocytes following centrifugation prior to injection of foreign DNA. Gamete Res. 18, 67–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Han, J. K. and Nuccitelli, R. (1990) Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis. J. Cell Biol. 110, 1103–1110.PubMedCrossRefGoogle Scholar
  31. 31.
    Jaconi, M. E. E., Pyle, J., Bortolon, R., Ou, J. and Clapham, D. E. (1997) Calcium release and influx colocalizes with endoplasmic reticulum. Curr. Biol. 7, 599–602.PubMedCrossRefGoogle Scholar
  32. 32.
    Dumont, J. N. (1972) Oogenesis in Xenopus laevis. J. Morphol. 136, 153–180.PubMedCrossRefGoogle Scholar
  33. 33.
    McKay, I. C., Forman, D., and White, R. G. (1981) A comparison of fluorescein isothiocyanate and lissamine rhodamine as labels for antibody in the fluorescent-antibody technique. Immunol. 43, 591–602.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Carmen Perez-Terzic
    • 1
  • Marisa Jaconi
    • 2
  • Lisa Stehno-Bittel
    • 3
  1. 1.Departments of Medicine and Pharmacology, Division of Cardiovascular DiseasesMayo Clinic, Mayo FoundationRochester
  2. 2.Laboratoire de Physiopathologie CardiovasculaireINSERMMontpellierFrance
  3. 3.University of Kansas Medical CenterKansas City

Personalised recommendations