Skip to main content

Biochemical Analysis of Integrin-Mediated Shc Signaling

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 129))

Abstract

Upon binding to extracellular matrix (ECM) ligands, integrins aggregate on the plane of the plasma membrane and interact on the cytoplasmic side with elements of the cytoskeleton as well as signaling molecules. These events result in the organization of adhesive junctions, such as focal adhesions and hemidesmosomes, and the activation of signaling pathways that regulate gene expression (1,2).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yamada, K. M. and Miyamoto, S. (1995) Integrin transmembrane signaling and cytoskeletal control. Curr. Biol. 7, 681–689.

    CAS  Google Scholar 

  2. Giancotti, F. G. (1997) Integrin signaling: Specificity and control of cell cycle progression. Curr. Opin. Cell Biol. 9, 691–700.

    Article  PubMed  CAS  Google Scholar 

  3. Parsons, J. T. (1996) Integrin-mediated signalling: regulation by protein tyrosine kinases and small GTP-binding proteins. Curr. Opin. Cell Biol. 8, 146–152.

    Article  PubMed  CAS  Google Scholar 

  4. Maniero, F., Pepe, A., Wary, K. K., Spinardi, L., Mohammadi, M., Schlessinger, J., and Giancotti, F. G. (1995) Signal transduction by the α6β4 integrin: distinct β4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytosk-eleton of hemidesmosomes. EMBO J. 14, 4470–4481.

    Google Scholar 

  5. Wary, K. K., Mainiero, F., Isakoff, S. J., Marcantonio, E. E., and Giancotti, F. G (1996) The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87, 733–743.

    Article  PubMed  CAS  Google Scholar 

  6. Wary, K. K., Mariotti, A., Zurzolo, C, and Giancotti, F. G. (1998) A requirement for caveolin-1 and associated Kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–634.

    Article  PubMed  CAS  Google Scholar 

  7. Maniero, F., Murgia, C, Wary, K. K., Curatola, A. M., Pepe, A., Blumemberg, M., Westwick, J. K., Der, C. J., and Giancotti F. G (1997) The coupling of α6β4 integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation. EMBO J. 16, 2365–2375.

    Article  Google Scholar 

  8. Koleske, A. J., Baltimore, D., and Lisanti, M. P. (1995) Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl. Acad. Sci. USA 92, 1381–1385.

    Article  PubMed  CAS  Google Scholar 

  9. Plantefaber, L. C. and Hynes, R. O. (1989) Changes in integrin expression on oncogenically transformed cells. Cell 56, 281–290.

    Article  PubMed  CAS  Google Scholar 

  10. Miyamoto, S., Akiyama, S. K., and Yamada, K. M. (1995) Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267, 883–885.

    Article  PubMed  CAS  Google Scholar 

  11. Giancotti, F. G, Stepp, M. A., Suzuki, S., Engvall, E., and Ruoslahti, E. (1992) Proteolytic processing of endogenous and recombinant β4 integrin subunit. J. Cell Biol. 118, 951–959.

    Article  PubMed  CAS  Google Scholar 

  12. Smith, S. B. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

  13. Monier, S., Parton, R. G, Vogel, F., Henske, A., and Kurzchalia, T. (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, forms high molecular mass oligomers in vivo and in vitro. Mol. Biol. Cell 6, 911–927.

    PubMed  CAS  Google Scholar 

  14. Sonnenberg, A., de Melker, A. A., Martinez de Velasco, A. M., Janssen, H., Calafat, J., and Niessen, C. M. (1993) Formation of hemidesmosomes in cells of a transformed murine mammary tumor cell line and mechanisms involved in adherence of these cells to laminin and kalinin. J. Cell Sci. 106, 1083–1102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Wary, K.K., Dans, M., Mariotti, A., Giancotti, F.G. (1999). Biochemical Analysis of Integrin-Mediated Shc Signaling. In: Howlett, A. (eds) Integrin Protocols. Methods in Molecular Biology, vol 129. Humana Press. https://doi.org/10.1385/1-59259-249-X:35

Download citation

  • DOI: https://doi.org/10.1385/1-59259-249-X:35

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-569-0

  • Online ISBN: 978-1-59259-249-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics