Skip to main content

Use of the 10-Day-Old Chick Embryo Model for Studying Angiogenesis

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 129))

Abstract

The development of new vessels plays a critical role in a number of physiological and pathological events such as embryonic development, wound healing, arthritis, and tumor growth and metastasis (14). One area that has received considerable attention is determining the role that integrins play in angiogenesis. Recently, we demonstrated that integrin αvβ3 was highly expressed on angiogenic blood vessels associated with a variety of solid tumors and during granulation tissue formation (5,6). Importantly, little if any αvβ3 was detected on quiescent vessels (5,6). In addition, antagonists of αvβ3 were shown to specifically inhibit angiogenesis in vivo. These findings suggest an important role for integrin αvβ3 during neovascularization. Thus, a great deal of attention has been focused on understanding the cellular and molecular mechanisms by which integrins regulate angiogenesis. Angiogenesis can be defined as the process by which new blood vessels form from pre-existing vessels. This process is similar to, but not identical with vasculogenesis, in which new blood vessels arise from blood islands and precursor cells called angioblasts (13). Thus, an in-depth understanding of the molecules that regulate this complex biological process is of fundamental importance in both basic and clinical research. In fact, recent advances in our understanding of the molecular and biochemical events that facilitate angiogenesis have provided insight into cellular invasion in general as well as the development of novel strategies for the treatment of neovascular diseases (5,711).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Risau, W. and Lemmon, V. (1998) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol. 125, 441–450.

    Article  Google Scholar 

  2. D’Amore, P. A. and Thompson, R. W. (1987) Mechanisms of angiogenesis. Annu. Rev. Physiol. 49, 453–464.

    Article  PubMed  Google Scholar 

  3. Auerbach, W. and Auerbach, R. (1994) Angiogenesis inhibition: a review. Pharmac. Ther. 53, 265–311.

    Article  Google Scholar 

  4. Blood, C. H., and Zetter, B. R. (1990) Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochemica Biophysica Acta. 1032, 89–118.

    CAS  Google Scholar 

  5. Brooks, P. C, Montgomery, A. M. P., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., and Cheresh, D. A. (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  6. Brooks, P. C, Clark, R. A. F., and Cheresh, D. A. (1994) Requirement of vascular integrin αvβ3 for angiogenesis. Science 264, 569–571.

    Article  PubMed  CAS  Google Scholar 

  7. Ingber, D., Fujita, T., Kishimoto, S., Sudo, K., Kanamaru, T., Brem, H., and Folkman, J. (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 348, 555–557.

    Article  PubMed  CAS  Google Scholar 

  8. Takeshita, S., Zheng, L. P., Brogi, E., Kearney, M., Pu, L., Brunting, S., Ferrara, N., Symes, J. F., and Isner, J. M. (1994) Therapeutic angiogenesis. J. Clin. Invest. 93, 662–670.

    Article  PubMed  CAS  Google Scholar 

  9. Baillie, C. T., Winslet, M.C., and Bradley, N. J. (1995) Tumor vasculature a potential therapeutic target. Br. J. Cancer 72, 257–267.

    Article  PubMed  CAS  Google Scholar 

  10. O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C, Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H., and Folkman, J. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma. Cell 79, 315–328.

    Article  PubMed  Google Scholar 

  11. Brooks, P. C. (1997) Integrin αvβ3: a therapeutic target. Drug News and Perspectives 10, 456–461.

    CAS  Google Scholar 

  12. Senger, D. R. (1996) Molecular framework for angiogenesis. Am. J. Pathol. 149, 1–7.

    PubMed  CAS  Google Scholar 

  13. Yang, E. Y. and Moses, H. L. (1990) Transforming growth factor β1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J. Cell Biol. 111, 731–741.

    Article  PubMed  CAS  Google Scholar 

  14. Iruela-Arispe, M. L., Lane, T. F., Redmond, D., Reilly, M., Bolender, R. P., Kavanagh, T. J., and Sage, E. H. (1995) Expression of SPARC during development of the chicken chorioallantoic membrane: evidence for regulated proteolysis in vivo. Mol. Biol. Cell. 6, 327–343.

    PubMed  CAS  Google Scholar 

  15. Brooks, P. C. (1996) Role of integrins in angiogenesis. Eur. J. Cancer 32A, 2423–2429.

    Article  PubMed  CAS  Google Scholar 

  16. Grant, D. S., Tashiro, K., Segui-Real, B., Yamada, Y., Martin, G. R., and Kleinman, H. K. (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58, 933–943.

    Article  PubMed  CAS  Google Scholar 

  17. Davis, C. M., Danehower, S. C, Laurenza, A., and Molony, J. L. (1993) Identification of a role of the vitronectin receptor and protein kinase C in the induction of endothelial cell vascular formation. J. Cell. Biochem. 51, 206–218.

    Article  PubMed  CAS  Google Scholar 

  18. Dvorak, H. F., Harvey, V. S., Estrella, P., Brown, L. F., Mcdonagh, J., and Dvorak, A. M. (1987) Fibrin containing gels induce angiogenesis. Lab. Invest. 57, 673–686.

    PubMed  CAS  Google Scholar 

  19. Montesano, R., Orci, L., and Vassalli, P. (1983) In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell. Biol. 97, 1648–1652.

    Article  PubMed  CAS  Google Scholar 

  20. Nicosia, R. F. and Ottinetti, A. (1990) Growth of mircovessels in serum free matrix culture of aorta: a quantitative assay of angiogenesis in vitro. Lab. Invest. 63, 115–122.

    PubMed  CAS  Google Scholar 

  21. Brown, K. J., Maynes, S. F., Bezos, A., Maguire, D. J., Ford, M. D., and Parish, C. R. (1996) A novel in vitro assay for human angiogenesis. Lab. Invest. 75, 539–555.

    PubMed  CAS  Google Scholar 

  22. Frater-Schroder, M., Risau, W., Hallmann, R., Gautschi, P., and Bohlen, P. (1987) Tumor necrosis factor type a, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc. Natl. Acad. Sci. USA 84, 5277–5281.

    Article  PubMed  CAS  Google Scholar 

  23. Sholley, M. M., Ferguson, G. P., Seibel, H. R., Montour, J. L., and Wilson, J. D. (1994) Mechanisms of neovascularization. Lab. Invest. 51, 624–634.

    Google Scholar 

  24. Friedlander, M., Brooks, P. C, Shaffer, R. W., Kincaid, C. M., Varner, J. A., and Cheresh, D. A. (1995) Definition of two angiogenic pathways by distinct αv integrins. Science 270, 1500–1502.

    Article  PubMed  CAS  Google Scholar 

  25. Chen, C, Parangi, S., Tolentino, M. J., and Folkman, J. (1995) A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res. 55, 4230–4233.

    PubMed  CAS  Google Scholar 

  26. Miller, J. W., Adamis, A. P., Shima, D. T., D’Amore, P. A., Moulton, R. S., O’Reilly, M. S., Folkman, J., Dvorak, H. F., Brown, L. F., Beres, B., Yeo, T., and Yeo, K. (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J. Pathol. 145, 574–584.

    PubMed  CAS  Google Scholar 

  27. Brooks, P. C, Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., and Cheresh, D. A. (1995) Anti-Integrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  28. Passaniti, A., Taylor, R. M., Pili, R., Guo, Y., Long, P. V., Haney, J., A., Pauly, R. R., Grant, D. S., and Martin, G. R. (1992) A simple quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67, 519–527.

    PubMed  CAS  Google Scholar 

  29. Nguyen, M., Shing, Y., and Folkman, J. (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47, 31–40.

    Article  PubMed  CAS  Google Scholar 

  30. Rizzo, V. and Defouw, D. O. (1993) Macromolecular selectivity of chick chorioallantoic membrane microvessels during normal angiogenesis and endothelial differentiation. Tissue Cell 25, 847–856.

    Article  PubMed  CAS  Google Scholar 

  31. Leeson, T. S., and Leeson, C. R. (1963) The chorioallantois of the chick: light and electron microscopic observations at various times of incubation. J. Anat. Lond. 97, 585–595.

    CAS  Google Scholar 

  32. Flamme, I. (1989) Is extraembryonic angiogenesis in the chick embryo controlled by the endoderm. Anat. Embryol. 180, 259–272.

    Article  PubMed  CAS  Google Scholar 

  33. Ausprunk, D. H., Knighton, D. R., and Folkman, J. (1974) Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev. Biol. 38, 237–247.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Brooks, P.C., Montgomery, A.M.P., Cheresh, D.A. (1999). Use of the 10-Day-Old Chick Embryo Model for Studying Angiogenesis. In: Howlett, A. (eds) Integrin Protocols. Methods in Molecular Biology, vol 129. Humana Press. https://doi.org/10.1385/1-59259-249-X:257

Download citation

  • DOI: https://doi.org/10.1385/1-59259-249-X:257

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-569-0

  • Online ISBN: 978-1-59259-249-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics