Advertisement

Integrin Gene Targeting

  • Jan F. Talts
  • Cord Brakebusch
  • Reinhard Fässler
Part of the Methods in Molecular Biology book series (MIMB, volume 129)

Abstract

Gene ablation, also known as knockout, is a powerful method to analyze gene function in vivo. Many integrin genes have been disrupted already, confirming but also contradicting previous results (1). In addition, new functions have been revealed, significantly increasing our understanding of the biological roles of integrins. Knockout of the remaining integrins will similarly elucidate their function during development. In addition, knockins of subtle mutations (2,3) and conditional knockouts (4,5), resulting in tissue-specific or temporally restricted gene ablation, will allow us to assess structure-function relationships of integrins in vivo and to investigate the function of integrins in a specific cell type at a specific time point in development.

Keywords

Embryonic Stem Embryonic Stem Cell Homologous Recombination Leukemia Inhibitory Factor Feeder Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fässler, R., Georges-Labouesse, E., and Hirsch, E. (1996) Genetic analyses of integrin function in mice. Curr. Opin. Cell Biol. 8, 641–646.PubMedCrossRefGoogle Scholar
  2. 2.
    Hanks, M., Wurst, W., Anson-Cartwright, L., Auerbach, A. B., and Joyner, A. L. (1995) Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 269, 679–682.PubMedCrossRefGoogle Scholar
  3. 3.
    Wang, Y., Schnegelsberg, P. N., Dausman, J., and Jaenisch, R. (1996) Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Nature 379, 823–825.PubMedCrossRefGoogle Scholar
  4. 4.
    Gu, H., Marth, J. D., Orban, P. C., Mossmann, H., and Rajewsky, K. (1994) Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 265, 103–106.PubMedCrossRefGoogle Scholar
  5. 5.
    Orban, P. C., Chui, D., and Marth, J. D. (1992) Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6861–6865.PubMedCrossRefGoogle Scholar
  6. 6.
    Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotent cells from mouse embryos. Nature 292, 154–156.PubMedCrossRefGoogle Scholar
  7. 7.
    Martin, G. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.PubMedCrossRefGoogle Scholar
  8. 8.
    Smithies, O., Gergg, R. G., Boggs, S. S., Koralewski, M. A., and Kuckerlapati, M. S. (1985) Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317, 230–234.PubMedCrossRefGoogle Scholar
  9. 9.
    Thomas, K. R. and Capecchi, M. R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512.PubMedCrossRefGoogle Scholar
  10. 10.
    Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.PubMedCrossRefGoogle Scholar
  11. 11.
    Deng, C. and Capecchi, M. R. (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell. Biol. 12, 3365–3371.PubMedGoogle Scholar
  12. 12.
    Bollag, R. J., Waldman, A. S., and Liskay, R. M. (1989) Homologous recombination in mammalian cells. Annu. Rev. Genet. 23, 199–225.PubMedCrossRefGoogle Scholar
  13. 13.
    Mombaerts, P., Clarke, A. R., Hooper, M. L., and Tonegawa, S. (1991) Creation of a large genomic deletion at the T-cell antigen receptor β-subunit locus in mouse embryonic stem cells by gene targeting. Proc. Natl. Acad. Sci. U. S. A. 88, 3084–3087.PubMedCrossRefGoogle Scholar
  14. 14.
    Fässler, R., Pfaff, M., Murphy, J., Noegel, A., Johansson, S., Timpl, R., and Albrecht R. (1995) Lack of β1 integrin gene in embryonic stem cells affects morphology, adhesion, and migration but not integration into the inner cell mass of blastocysts. J. Cell Biol. 128, 979–988.PubMedCrossRefGoogle Scholar
  15. 15.
    Zijlstra, M., Bix, M., Simister, N. E., Loring, J. M., Raulet, D. H., and Jaenisch, R. (1990) β2-Microglobulin deficient mice lack CD4-8+ cytotoxic T cells. Nature 344, 742–746.PubMedCrossRefGoogle Scholar
  16. 16.
    Fässler, R., Martin, K., Forsberg, E., Litzenberger, T., and Iglesias, A. (1995) Knockout mice: how to make them and why. The immunological approach. Int. Arch. Allergy Immunol. 106, 323–334.PubMedCrossRefGoogle Scholar
  17. 17.
    Fässler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Kaomei, G., Gullberg, D., Hescheler, J., Addicks, K., and Wobus, A. (1996) Differentiation and integrity of cardiac muscle cells are impaired in the absence of β1 integrin. J. Cell Sci. 109, 2989–2999.PubMedGoogle Scholar
  18. 18.
    Hirsch, E., Iglesias, A., Potocnik, A. J., Hartmann, U., and Fässler, R. (1996) Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins. Nature 380, 171–175.PubMedCrossRefGoogle Scholar
  19. 19.
    Fässler, R. and Meyer, M. (1995) Consequences of lack of β1 integrin gene expression in mice. Genes Dev. 9, 1896–1908.PubMedCrossRefGoogle Scholar
  20. 20.
    Bloch, W., Forsberg, E., Lentini, S., Brakebusch, C., Martin, K., Krell, H. W., Weidle, U. H., Addicks, K., and Fässler, R. (1997) β1 integrin is essential for teratoma growth and angiogenesis. J. Cell Biol. 139, 265–278.PubMedCrossRefGoogle Scholar
  21. 21.
    Wobus, A. M., Wallukat, G., and Hescheler, J. (1991) Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 48, 173–182.PubMedCrossRefGoogle Scholar
  22. 22.
    Bagutti C., Wobus A. M., Fässler, R., and Watt, F. M. (1996) Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and β1 integrin-deficient cells. Dev. Biol. 179, 184–196.PubMedCrossRefGoogle Scholar
  23. 23.
    te Riele, H., Maandag, E. R., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132.CrossRefGoogle Scholar
  24. 24.
    Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W., and Roder, J. C. (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428.PubMedCrossRefGoogle Scholar
  25. 25.
    Matsui, Y., Zsebo, K., and Hogan, B. L. (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847.PubMedCrossRefGoogle Scholar
  26. 26.
    Doell, R. and Kretchmer, N. (1962) Studies of small intestine during development. I. Distribution and activity of β-galactosidase. Biochim. Biophys. Acta 62, 353–362.PubMedCrossRefGoogle Scholar
  27. 27.
    te Riele, H., Maandag, E. R., Clarke, A., Hooper, M., and Berns, A. (1990) Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348, 649–651.CrossRefGoogle Scholar
  28. 28.
    Mortenssen, R. M., Zubiaur, M., Neer, E. J., and Seidman, J. G. (1991) Embryonic stem cells lacking a functional inhibitory G-protein subunit (αi2) produced by gene targeting of both alleles. Proc. Natl. Acad. Sci. USA 88, 7036–7040.CrossRefGoogle Scholar
  29. 29.
    Mortenssen, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A. T., and Seidman, J. G. (1992) Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395.Google Scholar
  30. 30.
    George, E. L. and Hynes, R. O. (1994) Gene targeting and generation of mutant mice for studies of cell-extracellular matrix interactions. Meth. Enzymol. 245, 386–420.PubMedCrossRefGoogle Scholar
  31. 31.
    Damjanov, I. and Solter, D. (1974) Experimental teratoma. Curr. Top. Pathol. 59, 69–130.PubMedGoogle Scholar
  32. 32.
    Ghattas, E. R., Sanes, J. R., and Majors, J. E. (1991) The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol. Cell Biol. 11, 5848–5859.PubMedGoogle Scholar
  33. 33.
    Evstafieva, A. G, Ugarova, T. Y., Chernov, B. K., and Shatsky, I. N. (1991) A complex RNA sequence determines the internal initiation of encephalomyocarditis virus RNA translation. Nucleic Acids Res. 19, 665–671.PubMedCrossRefGoogle Scholar
  34. 34.
    Kellendonk, C., Tronche, F., Monaghan, A. P., Angrand, P. O., Stewart, F., and Schutz, G. (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 24, 1404–1411.PubMedCrossRefGoogle Scholar
  35. 35.
    Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. (1996) Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93, 10,887–10,890.PubMedCrossRefGoogle Scholar
  36. 36.
    McMahon, A. P. and Bradley, A. (1990) The Wnt-1 (int) proto-oncogene is required for the development of a large region of the mouse brain. Cell 62, 1073–1085.PubMedCrossRefGoogle Scholar
  37. 37.
    Schwartzberg, P. L., Goff, S. P., and Robertson, E. J. (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246, 799–803.PubMedCrossRefGoogle Scholar
  38. 38.
    Tucker, K. L., Wang, Y., Dausman, J., and Jaenisch, R. (1997) A transgenic mouse strain expressing four drug-selectable marker genes. Nucl Acids Res. 25, 3745–3746.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1999

Authors and Affiliations

  • Jan F. Talts
    • 1
  • Cord Brakebusch
    • 2
  • Reinhard Fässler
    • 2
  1. 1.Max-Planck-Institute für BiochemieMartinsriedGermany
  2. 2.Department of Experimental PathologyLund University HospitalLundSweden

Personalised recommendations