Skip to main content

Retroviral Integrase

A Novel Target in Antiviral Drug Development and Basic In Vitro Assays with the Purified Enzyme

  • Protocol
Antiviral Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 24))

Abstract

Two critical events are the signature of the life cycle of retroviruses (1). The first is reverse transcription, whereby the single-stranded RNA genome of the retrovirus is copied into double-stranded DNA. The second of these events is integration, whereby this viral DNA is inserted into a chromosome of the host cell, establishing what is known as the proviral state. The proviral state is required for efficient replication of retroviruses. This crucial second event is catalyzed by the integrase enzyme. Retroviruses encode the integrase at the 3′ end of the pol gene. Integrase is generated by the retroviral protease as a proteolytic cleavage product of the gag-pol fusion protein precursor, and is contained in the virus particle. During viral infection, integrase catalyzes the excision of the last two nucleotides from each 3′ end of the linear viral DNA, leaving the terminal dinucleotide CA-3P-OH at these recessed 3′ ends. This activity is referred to as the 3′-processing or dinucleotide cleavage. After transport to the nucleus as a nucleoprotein complex (“preintegration complex”), integrase catalyzes a DNA strand transfer reaction (3′-end joining) involving the nucleophilic attack of these ends on a host chromosome. Completion of the integration process requires removal of the two unpaired nucleotides at the 5′ ends of the viral DNA and gap repair reactions that are thought to be accomplished by cellular enzymes. For recent reviews, see Andrake and Skalka (2) and Rice et al. (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varmus, H. E. and Brown, P. O. (1989) in Mobile DNA (Berg, D. and Howe, M., eds.), Am. Soc. Microbiol., Washington, DC, pp. 53–108.

    Google Scholar 

  2. Andrake, M. D. and Skalka, A. M. (1996) J. Biol. Chem. 271, 19,633–19,636.

    Article  CAS  PubMed  Google Scholar 

  3. Rice, P., Craigie, R., and Davies, D. R. (1996) Curr. Opin. Struct. Biol. 6, 76–83.

    Article  CAS  PubMed  Google Scholar 

  4. Cushman, M., Golebiewski, W. M., Pommier, Y., Mazumder, A., Reymen, D., De Clerq, E., Graham, L., and Rice, W. G. (1995) J. Med. Chem. 38, 443–452.

    Article  CAS  PubMed  Google Scholar 

  5. LaFemina, R. L., Graham, P. L., LeGrow, K., Hastings, J. C., Wolfe, A., Young, S. D., Emini, E. A., and Hazuda, D. J. (1995) Antimicrob. Agents Chemother. 39, 320–324.

    CAS  PubMed  Google Scholar 

  6. Fesen, M. R., Kohn, K. W., Leteurtre, F., and Pommier, Y. (1993) Proc. Natl. Acad. Sci. USA 90, 2399–2403.

    Article  CAS  PubMed  Google Scholar 

  7. Robinson, W. E., Jr., Reinecke, M. G., Abdel-Malek., S., Jia, Q., and Chow, S. A. (1996) Proc. Natl. Acad. Sci. USA 93, 6326–6331.

    Google Scholar 

  8. Bouziane, M., Cherny, D. I., Mouscadet, J. F., and Auclair, C. (1996) J. Biol. Chem. 271, 10,359–10,364.

    Article  CAS  PubMed  Google Scholar 

  9. Mazumder, A., Wang, S., Neamati, N., Nicklaus, M., Sunder, S., Chen, J., Milne, G. W. A., Rice, W. G., Burke, T. R. J., and Pommier, Y. (1996) J. Med. Chem. 39, 2472–2481.

    Article  CAS  PubMed  Google Scholar 

  10. Mazumder, A., Neamati, N., Ojwang, J. O., Sunder, S., Rando, R. F., and Pommier, Y. (1996) Biochemistry 35, 13,762–13,771.

    Article  CAS  PubMed  Google Scholar 

  11. Farnet, C. M., Wang, B., Lipford, J. R., and Bushmarn, F. D. (1996) Proc. Natl. Acad. Sci. USA 93, 9742–9747.

    Article  CAS  PubMed  Google Scholar 

  12. Mazumder, A., Engelman, A., Craigie, R., Fesen, M., and Pommier, Y. (1994) Nucleic Acids Res. 22, 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  13. Mazumder, A., Gupta, M., and Pommier, Y. (1994) Nucleic Acids Res. 22, 4441–4448.

    Article  CAS  PubMed  Google Scholar 

  14. Mazumder, A., and Pommier, Y. (1995) Nucleic Acids Res. 23, 2865–2871.

    Article  CAS  PubMed  Google Scholar 

  15. Mazumder, A., Neamati, N., Pilon, A., Sunder, S., and Pommier, Y. (1996) J. Biol. Chem. 271, 27,330–27,338.

    Article  CAS  PubMed  Google Scholar 

  16. Craigie, R., Fujiwara, T., and Bushman, F. (1990) Cell 62, 829–837.

    Article  CAS  PubMed  Google Scholar 

  17. Katz, R. A., Merkel, G., Kulkosky, J., Leis, J., and Skalka, A. M. (1990) Cell 63, 87–95.

    Article  CAS  PubMed  Google Scholar 

  18. Engelman, A., Mizuuchi, K., and Craigie, R. (1991) Cell 67, 1211–1221.

    Article  CAS  PubMed  Google Scholar 

  19. Vink, C., Yeheskiely, E., van der Marel, G. A., van Boom, J. H., and Plasterk, R. H. (1991) Nucleic Acids Res. 19, 6691–6698.

    Article  CAS  PubMed  Google Scholar 

  20. Chow, S. A., Vincent, K. A., Ellison, V., and Brown, P. O. (1992) Science 255, 723–726.

    Article  CAS  PubMed  Google Scholar 

  21. Sherman, P. A., Dickson, M. L., and Fyfe, J. A. (1992) J. Virol. 66, 3593–3601.

    CAS  PubMed  Google Scholar 

  22. Bushman, F. D., Engelman, A., Palmer, I., Wingfield, P., and Craigie, R. (1993) Proc. Natl. Acad. Sci. USA 90, 3428–3432.

    Article  CAS  PubMed  Google Scholar 

  23. Chow, S. A. and Brown, P. O. (1994) J. Virol. 68, 7869–7878.

    CAS  PubMed  Google Scholar 

  24. van Den Ent, F. M. I., Vink, C., and Plasterk, R. H. A. (1994) J. Virol. 68, 7825–7832.

    PubMed  Google Scholar 

  25. Yoshinaga, T., Kimura-Ohtani, Y., and Fujiwara, T. (1994) J. Virol. 68, 5690–5697.

    CAS  PubMed  Google Scholar 

  26. Engelman, A., Hickman, A. B., and Craigie, R. (1994) J. Virol. 68, 5911–5917.

    CAS  PubMed  Google Scholar 

  27. Jenkins, T. M., Engelman, A., Ghirlando, R., and Craigie, R. (1996) J. Biol. Chem. 271, 7712–7718.

    Article  CAS  PubMed  Google Scholar 

  28. Engelman, A. and Craigie, R. (1995) J. Virol. 69, 5908–5911.

    CAS  PubMed  Google Scholar 

  29. Fesen, M., Pommier, Y., Leteurtre, F., Hiroguchi, S., Yung, J., and Kohn, K. W. (1994) Biochem. Pharmacol. 48, 595–608.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Mazumder, A., Neamati, N., Sunder, S., Owen, J., Pommier, Y. (2000). Retroviral Integrase. In: Kinchington, D., Schinazi, R.F. (eds) Antiviral Methods and Protocols. Methods in Molecular Medicine™, vol 24. Humana Press. https://doi.org/10.1385/1-59259-245-7:327

Download citation

  • DOI: https://doi.org/10.1385/1-59259-245-7:327

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-561-4

  • Online ISBN: 978-1-59259-245-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics