Skip to main content

Identifying and Characterizing HIV Protease Inhibitors

  • Protocol
Antiviral Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 24))

Abstract

HIV protease catalyzes the hydrolysis of specific peptide bonds of viral polyproteins, thus processing these polyproteins into their active components. These protein processing reactions are requisite for viral replication. Therefore, the HIV protease is an ideal target for the chemotherapeutic treatment of HIV disease (13). HIV protease is an aspartyl protease,and the aspartyl protease inhibitor, pepstatin, was one of the first identified inhibitors of HIV protease. More potent inhibitors have been designed and synthesized since, in fact, four protease inhibitors—saquinavir (Ro-31,8959), ritonavir (ABT-538), indinavir (L-735,524), and Nelfinavir (AG1343)—are effective in clinical trials to treat HIV disease (46) and recently were approved by the Food and Drug Administration for the chemotherapeutic treatment of HIV infections. Other protease inhibitors in clinical trials are VX-478 (141W94) and ABT-378. Notwithstanding these early successes, it is difficult to comply with these drug’s dosing regiments. Furthermore, viral resistance to individual inhibitors and cross-resistance to multiple inhibitors occur in vivo (7,8). Therefore, a medical need still exists for new HIV protease inhibitors with different resistance profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huff, J. R. (1991) HIV protease: A novel chemotherapeutic target for AIDS. J. Med. Chem. 34, 2305–2314.

    Article  CAS  PubMed  Google Scholar 

  2. Norbeck, D. W. and Kempf, D. J., (1991) in Annual Reports in Medicinal Chemistry (Bristol, J. A., ed.), Academic, San Diego, pp. 141–150.

    Google Scholar 

  3. Dark, P. L. and Huff, J. R. (1994) HIV protease as an inhibitor target of the treatment of AIDS. Adv. Pharmacol. 25, 399–454.

    Article  Google Scholar 

  4. Jacobsen, H., Brun-Vezinet, F., Duncan, I., Hanggi, M., Ott, M., Vella, S., Weber, J., and Mous, J. (1994) Genotypic characterizations of HIV-1 from patients aftger prolonged treatment withproteinase inhibitor saquinavir, in III International Workshop on HIV Drug-Resistance, 3, p. 16.

    Google Scholar 

  5. Ho, D. D., Neumann, A. V., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M. (1995) Rapid turnover of plama virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126.

    Article  CAS  PubMed  Google Scholar 

  6. Wei, X., Ghosh, S. K., Taylor, M., E., Johnson, V. A., Emini, E. A., Deutsch, P., Lifson, J. D., Bonhoeffer, S., Nowak, M. A., Hahn, B. H., Saag, M. S., and Shaw, G. M. (1995) Viral dynamics in human immunodeficiency virus type-1 infection. Nature 373, 117–122.

    Article  CAS  PubMed  Google Scholar 

  7. Richman, D. D. (1995) Protease uninhibited. Nature 374, 494.

    Article  CAS  PubMed  Google Scholar 

  8. Condra, J. H., Schleif, W. A., Blahy, O. M., Gabryelski, L. J., Graham D. J., Quintero, J. C., Rhodes, A., Robbins, H. L., Roth, E., Shivaprakash, M., Titus, D., Yang, T., Teppler, H., Squires, K. E., Deutsch, P. J., and Emini, E. A. (1995) In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374, 569–571.

    Article  CAS  PubMed  Google Scholar 

  9. Toth, M. V. and Marshall, G. R. (1990) A Simple continuous fluorometric assay for HIV protease. Int. J. Peptide Protein Res. 36, 544–550.

    Article  CAS  Google Scholar 

  10. Maschera, B., Darby, G., Palú, G., Wright, L. L., Tisdale, M., Myers, R., Blair, E. D., and Furfine, E. S. (1996) Human immunodeficiency virus: Mutations in the protease that confer resistance to saquinavir increase the dissociation rate constant of the protease-saquinavir complex. J. Biol. Chem. 271, 33,231–33,235.

    Article  CAS  PubMed  Google Scholar 

  11. Morrison, J. F. and Walsh, C. T. (1988) The behavior and significance of slow-binding enzyme inhibitors. Adv. Enz. 61, 201–301.

    CAS  Google Scholar 

  12. Jordan, S. P., Zugau, J., Darke, P. L., and Kuo, L. C. (1992) Activity and dimerization of human immunodeficiency virus protease as a function of solvent composition and enzyme concentration. J. Biol. Chem. 267, 20,028–20,032.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Furfine, E.S. (2000). Identifying and Characterizing HIV Protease Inhibitors. In: Kinchington, D., Schinazi, R.F. (eds) Antiviral Methods and Protocols. Methods in Molecular Medicine™, vol 24. Humana Press. https://doi.org/10.1385/1-59259-245-7:313

Download citation

  • DOI: https://doi.org/10.1385/1-59259-245-7:313

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-561-4

  • Online ISBN: 978-1-59259-245-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics